| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl5 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| uprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) |
| uprcl5.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| Ref | Expression |
|---|---|
| uprcl5 | ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | . . 3 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 4 | eqid 2733 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | uprcl5.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 6 | eqid 2733 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 7 | 1, 3 | uprcl3 49315 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
| 8 | 1 | uprcl2 49314 | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 9 | 2, 3, 4, 5, 6, 7, 8 | isuplem 49304 | . . 3 ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ (Base‘𝐷) ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀)))) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (Base‘𝐷) ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀))) |
| 11 | 10 | simplrd 769 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃!wreu 3345 〈cop 4581 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 compcco 17175 UP cup 49298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-func 17767 df-up 49299 |
| This theorem is referenced by: isup2 49319 upeu3 49320 upeu4 49321 oppcuprcl5 49326 uptri 49339 uptrar 49341 uptrai 49342 uptr2 49346 isinito3 49625 lanrcl5 49760 iscmd 49791 lmddu 49792 |
| Copyright terms: Public domain | W3C validator |