Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uprcl5 Structured version   Visualization version   GIF version

Theorem uprcl5 48899
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.)
Hypotheses
Ref Expression
uprcl2.x (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀)
uprcl5.j 𝐽 = (Hom ‘𝐸)
Assertion
Ref Expression
uprcl5 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))

Proof of Theorem uprcl5
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uprcl2.x . . 3 (𝜑𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀)
2 eqid 2734 . . . 4 (Base‘𝐷) = (Base‘𝐷)
3 eqid 2734 . . . 4 (Base‘𝐸) = (Base‘𝐸)
4 eqid 2734 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
5 uprcl5.j . . . 4 𝐽 = (Hom ‘𝐸)
6 eqid 2734 . . . 4 (comp‘𝐸) = (comp‘𝐸)
71, 3uprcl3 48897 . . . 4 (𝜑𝑊 ∈ (Base‘𝐸))
81uprcl2 48896 . . . 4 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
92, 3, 4, 5, 6, 7, 8isuplem 48891 . . 3 (𝜑 → (𝑋(⟨𝐹, 𝐺⟩(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ (Base‘𝐷) ∧ 𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑦))𝑀))))
101, 9mpbid 232 . 2 (𝜑 → ((𝑋 ∈ (Base‘𝐷) ∧ 𝑀 ∈ (𝑊𝐽(𝐹𝑋))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊𝐽(𝐹𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(⟨𝑊, (𝐹𝑋)⟩(comp‘𝐸)(𝐹𝑦))𝑀)))
1110simplrd 769 1 (𝜑𝑀 ∈ (𝑊𝐽(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  ∃!wreu 3362  cop 4614   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230  Hom chom 17285  compcco 17286  UPcup 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-func 17875  df-up 48886
This theorem is referenced by:  isup2  48900  upeu3  48901  upeu4  48902
  Copyright terms: Public domain W3C validator