| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl5 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| uprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) |
| uprcl5.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| Ref | Expression |
|---|---|
| uprcl5 | ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | . . 3 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) | |
| 2 | eqid 2734 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 4 | eqid 2734 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | uprcl5.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 6 | eqid 2734 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 7 | 1, 3 | uprcl3 48897 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
| 8 | 1 | uprcl2 48896 | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 9 | 2, 3, 4, 5, 6, 7, 8 | isuplem 48891 | . . 3 ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ (Base‘𝐷) ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀)))) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (Base‘𝐷) ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀))) |
| 11 | 10 | simplrd 769 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃!wreu 3362 〈cop 4614 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 Hom chom 17285 compcco 17286 UPcup 48885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-func 17875 df-up 48886 |
| This theorem is referenced by: isup2 48900 upeu3 48901 upeu4 48902 |
| Copyright terms: Public domain | W3C validator |