| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isup | Structured version Visualization version GIF version | ||
| Description: The predicate "is a universal pair". (Contributed by Zhi Wang, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| upfval.b | ⊢ 𝐵 = (Base‘𝐷) |
| upfval.c | ⊢ 𝐶 = (Base‘𝐸) |
| upfval.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| upfval.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| upfval.o | ⊢ 𝑂 = (comp‘𝐸) |
| upfval2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐶) |
| upfval3.f | ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| isup.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| isup.m | ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) |
| Ref | Expression |
|---|---|
| isup | ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isup.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | isup.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋)))) |
| 4 | upfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 5 | upfval.c | . . 3 ⊢ 𝐶 = (Base‘𝐸) | |
| 6 | upfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 7 | upfval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 8 | upfval.o | . . 3 ⊢ 𝑂 = (comp‘𝐸) | |
| 9 | upfval2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐶) | |
| 10 | upfval3.f | . . 3 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | isuplem 49168 | . 2 ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊𝐽(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀)))) |
| 12 | 3, 11 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊𝐽(𝐹‘𝑦))∃!𝑘 ∈ (𝑋𝐻𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉𝑂(𝐹‘𝑦))𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3352 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Func cfunc 17816 UP cup 49162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-func 17820 df-up 49163 |
| This theorem is referenced by: isup2 49183 upeu4 49185 oppcup 49196 uptrlem3 49201 uptr2 49210 isinito2lem 49487 lanup 49630 iscmd 49655 |
| Copyright terms: Public domain | W3C validator |