| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for universal object. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobrcl | ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 5838 | . . . . 5 ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) ↔ ∃𝑚 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑚)) | |
| 2 | 1 | ibi 267 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → ∃𝑚 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑚) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) ∧ 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑚) → 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑚) | |
| 4 | 3 | up1st2nd 49216 | . . . . 5 ⊢ ((𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) ∧ 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑚) → 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐷 UP 𝐸)𝑊)𝑚) |
| 5 | 4 | uprcl2 49220 | . . . 4 ⊢ ((𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) ∧ 𝑋(𝐹(𝐷 UP 𝐸)𝑊)𝑚) → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) |
| 6 | 2, 5 | exlimddv 1936 | . . 3 ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) |
| 7 | 6 | funcrcl2 49110 | . 2 ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → 𝐷 ∈ Cat) |
| 8 | 6 | funcrcl3 49111 | . 2 ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → 𝐸 ∈ Cat) |
| 9 | 7, 8 | jca 511 | 1 ⊢ (𝑋 ∈ dom (𝐹(𝐷 UP 𝐸)𝑊) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Catccat 17567 Func cfunc 17758 UP cup 49204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17762 df-up 49205 |
| This theorem is referenced by: isinito4a 49579 initocmd 49700 |
| Copyright terms: Public domain | W3C validator |