| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl4 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| uprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) |
| uprcl4.b | ⊢ 𝐵 = (Base‘𝐷) |
| Ref | Expression |
|---|---|
| uprcl4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | . . 3 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 2 | uprcl4.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
| 6 | eqid 2731 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
| 7 | 1, 3 | uprcl3 49221 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
| 8 | 1 | uprcl2 49220 | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 9 | 2, 3, 4, 5, 6, 7, 8 | isuplem 49210 | . . 3 ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀)))) |
| 10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀))) |
| 11 | 10 | simplld 767 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 〈cop 4582 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Hom chom 17169 compcco 17170 UP cup 49204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17762 df-up 49205 |
| This theorem is referenced by: isup2 49225 upeu3 49226 upeu4 49227 oppcuprcl4 49230 uptr 49244 uptrar 49247 isinito2 49530 isinito3 49531 lanrcl4 49665 iscmd 49697 cmdlan 49703 |
| Copyright terms: Public domain | W3C validator |