![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl4 | Structured version Visualization version GIF version |
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
Ref | Expression |
---|---|
uprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) |
uprcl4.b | ⊢ 𝐵 = (Base‘𝐷) |
Ref | Expression |
---|---|
uprcl4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uprcl2.x | . . 3 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀) | |
2 | uprcl4.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
3 | eqid 2737 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
4 | eqid 2737 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | eqid 2737 | . . . 4 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
6 | eqid 2737 | . . . 4 ⊢ (comp‘𝐸) = (comp‘𝐸) | |
7 | 1, 3 | uprcl3 48862 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐸)) |
8 | 1 | uprcl2 48861 | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
9 | 2, 3, 4, 5, 6, 7, 8 | isuplem 48857 | . . 3 ⊢ (𝜑 → (𝑋(〈𝐹, 𝐺〉(𝐷UP𝐸)𝑊)𝑀 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀)))) |
10 | 1, 9 | mpbid 232 | . 2 ⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ 𝑀 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑋))) ∧ ∀𝑦 ∈ 𝐵 ∀𝑔 ∈ (𝑊(Hom ‘𝐸)(𝐹‘𝑦))∃!𝑘 ∈ (𝑋(Hom ‘𝐷)𝑦)𝑔 = (((𝑋𝐺𝑦)‘𝑘)(〈𝑊, (𝐹‘𝑋)〉(comp‘𝐸)(𝐹‘𝑦))𝑀))) |
11 | 10 | simplld 768 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃!wreu 3378 〈cop 4640 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 Hom chom 17318 compcco 17319 UPcup 48851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-func 17918 df-up 48852 |
This theorem is referenced by: isup2 48865 upeu3 48866 upeu4 48867 |
Copyright terms: Public domain | W3C validator |