| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uprcl3 | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025.) |
| Ref | Expression |
|---|---|
| uprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) |
| uprcl3.c | ⊢ 𝐶 = (Base‘𝐸) |
| Ref | Expression |
|---|---|
| uprcl3 | ⊢ (𝜑 → 𝑊 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | . 2 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀) | |
| 2 | df-br 5094 | . . 3 ⊢ (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 ↔ 〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)) | |
| 3 | 2 | biimpi 216 | . 2 ⊢ (𝑋(〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)𝑀 → 〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊)) |
| 4 | uprcl3.c | . . . 4 ⊢ 𝐶 = (Base‘𝐸) | |
| 5 | 4 | uprcl 49309 | . . 3 ⊢ (〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊) → (〈𝐹, 𝐺〉 ∈ (𝐷 Func 𝐸) ∧ 𝑊 ∈ 𝐶)) |
| 6 | 5 | simprd 495 | . 2 ⊢ (〈𝑋, 𝑀〉 ∈ (〈𝐹, 𝐺〉(𝐷 UP 𝐸)𝑊) → 𝑊 ∈ 𝐶) |
| 7 | 1, 3, 6 | 3syl 18 | 1 ⊢ (𝜑 → 𝑊 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Func cfunc 17763 UP cup 49298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-func 17767 df-up 49299 |
| This theorem is referenced by: uprcl4 49316 uprcl5 49317 isup2 49319 upeu3 49320 upeu4 49321 oppcuprcl3 49325 uptri 49339 uptrai 49342 uptr2 49346 isinito3 49625 lmddu 49792 cmddu 49793 cmdlan 49797 |
| Copyright terms: Public domain | W3C validator |