![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn | Structured version Visualization version GIF version |
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoissrrn.1 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoissrrn | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6898 | . . . . 5 ⊢ (([,) ∘ 𝐼)‘𝑘) ∈ V | |
2 | 1 | rgenw 3059 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V |
3 | ixpssmapg 8924 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) |
6 | reex 11203 | . . . 4 ⊢ ℝ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
8 | hoissrrn.1 | . . . . . 6 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
9 | 8 | hoissre 45829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
10 | 9 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
11 | iunss 5041 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) | |
12 | 10, 11 | sylibr 233 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
13 | mapss 8885 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
14 | 7, 12, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
15 | 5, 14 | sstrd 3987 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ⊆ wss 3943 ∪ ciun 4990 × cxp 5667 ∘ ccom 5673 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ↑m cmap 8822 Xcixp 8893 ℝcr 11111 [,)cico 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ico 13336 |
This theorem is referenced by: ovnlecvr 45843 |
Copyright terms: Public domain | W3C validator |