![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn | Structured version Visualization version GIF version |
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoissrrn.1 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoissrrn | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . . 5 ⊢ (([,) ∘ 𝐼)‘𝑘) ∈ V | |
2 | 1 | rgenw 3063 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V |
3 | ixpssmapg 8967 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) |
6 | reex 11244 | . . . 4 ⊢ ℝ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
8 | hoissrrn.1 | . . . . . 6 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
9 | 8 | hoissre 46500 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
10 | 9 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
11 | iunss 5050 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) | |
12 | 10, 11 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
13 | mapss 8928 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
14 | 7, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
15 | 5, 14 | sstrd 4006 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ∪ ciun 4996 × cxp 5687 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Xcixp 8936 ℝcr 11152 [,)cico 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ico 13390 |
This theorem is referenced by: ovnlecvr 46514 |
Copyright terms: Public domain | W3C validator |