Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn | Structured version Visualization version GIF version |
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoissrrn.1 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoissrrn | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6675 | . . . . 5 ⊢ (([,) ∘ 𝐼)‘𝑘) ∈ V | |
2 | 1 | rgenw 3082 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V |
3 | ixpssmapg 8515 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) |
6 | reex 10671 | . . . 4 ⊢ ℝ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
8 | hoissrrn.1 | . . . . . 6 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
9 | 8 | hoissre 43577 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
10 | 9 | ralrimiva 3113 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
11 | iunss 4937 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) | |
12 | 10, 11 | sylibr 237 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
13 | mapss 8476 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
14 | 7, 12, 13 | syl2anc 587 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
15 | 5, 14 | sstrd 3904 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3070 Vcvv 3409 ⊆ wss 3860 ∪ ciun 4886 × cxp 5525 ∘ ccom 5531 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ↑m cmap 8421 Xcixp 8484 ℝcr 10579 [,)cico 12786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-pre-lttri 10654 ax-pre-lttrn 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-er 8304 df-map 8423 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-ico 12790 |
This theorem is referenced by: ovnlecvr 43591 |
Copyright terms: Public domain | W3C validator |