Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoissrrn Structured version   Visualization version   GIF version

Theorem hoissrrn 46564
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
hoissrrn.1 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoissrrn (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋))
Distinct variable groups:   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem hoissrrn
StepHypRef Expression
1 fvex 6919 . . . . 5 (([,) ∘ 𝐼)‘𝑘) ∈ V
21rgenw 3065 . . . 4 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V
3 ixpssmapg 8968 . . . 4 (∀𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V → X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋))
42, 3ax-mp 5 . . 3 X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)
54a1i 11 . 2 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋))
6 reex 11246 . . . 4 ℝ ∈ V
76a1i 11 . . 3 (𝜑 → ℝ ∈ V)
8 hoissrrn.1 . . . . . 6 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
98hoissre 46559 . . . . 5 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
109ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
11 iunss 5045 . . . 4 ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ ↔ ∀𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
1210, 11sylibr 234 . . 3 (𝜑 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
13 mapss 8929 . . 3 ((ℝ ∈ V ∧ 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) → ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
147, 12, 13syl2anc 584 . 2 (𝜑 → ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
155, 14sstrd 3994 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3061  Vcvv 3480  wss 3951   ciun 4991   × cxp 5683  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Xcixp 8937  cr 11154  [,)cico 13389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ico 13393
This theorem is referenced by:  ovnlecvr  46573
  Copyright terms: Public domain W3C validator