![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn | Structured version Visualization version GIF version |
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
hoissrrn.1 | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
Ref | Expression |
---|---|
hoissrrn | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6900 | . . . . 5 ⊢ (([,) ∘ 𝐼)‘𝑘) ∈ V | |
2 | 1 | rgenw 3066 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V |
3 | ixpssmapg 8917 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)) |
6 | reex 11196 | . . . 4 ⊢ ℝ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
8 | hoissrrn.1 | . . . . . 6 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
9 | 8 | hoissre 45194 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
10 | 9 | ralrimiva 3147 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
11 | iunss 5046 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) | |
12 | 10, 11 | sylibr 233 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) |
13 | mapss 8878 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
14 | 7, 12, 13 | syl2anc 585 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
15 | 5, 14 | sstrd 3990 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ⊆ wss 3946 ∪ ciun 4995 × cxp 5672 ∘ ccom 5678 ⟶wf 6535 ‘cfv 6539 (class class class)co 7403 ↑m cmap 8815 Xcixp 8886 ℝcr 11104 [,)cico 13321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-pre-lttri 11179 ax-pre-lttrn 11180 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7969 df-2nd 7970 df-er 8698 df-map 8817 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-ico 13325 |
This theorem is referenced by: ovnlecvr 45208 |
Copyright terms: Public domain | W3C validator |