Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoissrrn Structured version   Visualization version   GIF version

Theorem hoissrrn 43977
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
hoissrrn.1 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
Assertion
Ref Expression
hoissrrn (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋))
Distinct variable groups:   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem hoissrrn
StepHypRef Expression
1 fvex 6769 . . . . 5 (([,) ∘ 𝐼)‘𝑘) ∈ V
21rgenw 3075 . . . 4 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V
3 ixpssmapg 8674 . . . 4 (∀𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ∈ V → X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋))
42, 3ax-mp 5 . . 3 X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋)
54a1i 11 . 2 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋))
6 reex 10893 . . . 4 ℝ ∈ V
76a1i 11 . . 3 (𝜑 → ℝ ∈ V)
8 hoissrrn.1 . . . . . 6 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
98hoissre 43972 . . . . 5 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
109ralrimiva 3107 . . . 4 (𝜑 → ∀𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
11 iunss 4971 . . . 4 ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ ↔ ∀𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
1210, 11sylibr 233 . . 3 (𝜑 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ)
13 mapss 8635 . . 3 ((ℝ ∈ V ∧ 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ ℝ) → ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
147, 12, 13syl2anc 583 . 2 (𝜑 → ( 𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
155, 14sstrd 3927 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) ⊆ (ℝ ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063  Vcvv 3422  wss 3883   ciun 4921   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Xcixp 8643  cr 10801  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ico 13014
This theorem is referenced by:  ovnlecvr  43986
  Copyright terms: Public domain W3C validator