![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn2 | Structured version Visualization version GIF version |
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoissrrn2.kph | ⊢ Ⅎ𝑘𝜑 |
hoissrrn2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
hoissrrn2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
hoissrrn2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7481 | . . . . 5 ⊢ (𝐴[,)𝐵) ∈ V | |
2 | 1 | rgenw 3071 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V |
3 | ixpssmapg 8986 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) |
6 | reex 11275 | . . . 4 ⊢ ℝ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
8 | hoissrrn2.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
9 | hoissrrn2.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
10 | hoissrrn2.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) | |
11 | icossre 13488 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴[,)𝐵) ⊆ ℝ) |
13 | 12 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → (𝐴[,)𝐵) ⊆ ℝ)) |
14 | 8, 13 | ralrimi 3263 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
15 | iunss 5068 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) | |
16 | 14, 15 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
17 | mapss 8947 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
18 | 7, 16, 17 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
19 | 5, 18 | sstrd 4019 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 ∪ ciun 5015 (class class class)co 7448 ↑m cmap 8884 Xcixp 8955 ℝcr 11183 ℝ*cxr 11323 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 |
This theorem is referenced by: ovnhoilem1 46522 ovnhoilem2 46523 ovnhoi 46524 hoiqssbllem2 46544 |
Copyright terms: Public domain | W3C validator |