| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn2 | Structured version Visualization version GIF version | ||
| Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| hoissrrn2.kph | ⊢ Ⅎ𝑘𝜑 |
| hoissrrn2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| hoissrrn2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| hoissrrn2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7438 | . . . . 5 ⊢ (𝐴[,)𝐵) ∈ V | |
| 2 | 1 | rgenw 3055 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V |
| 3 | ixpssmapg 8942 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) |
| 6 | reex 11220 | . . . 4 ⊢ ℝ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
| 8 | hoissrrn2.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 9 | hoissrrn2.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 10 | hoissrrn2.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) | |
| 11 | icossre 13445 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴[,)𝐵) ⊆ ℝ) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → (𝐴[,)𝐵) ⊆ ℝ)) |
| 14 | 8, 13 | ralrimi 3240 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
| 15 | iunss 5021 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) | |
| 16 | 14, 15 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
| 17 | mapss 8903 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
| 18 | 7, 16, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
| 19 | 5, 18 | sstrd 3969 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 ∪ ciun 4967 (class class class)co 7405 ↑m cmap 8840 Xcixp 8911 ℝcr 11128 ℝ*cxr 11268 [,)cico 13364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ico 13368 |
| This theorem is referenced by: ovnhoilem1 46630 ovnhoilem2 46631 ovnhoi 46632 hoiqssbllem2 46652 |
| Copyright terms: Public domain | W3C validator |