Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn2 | Structured version Visualization version GIF version |
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
hoissrrn2.kph | ⊢ Ⅎ𝑘𝜑 |
hoissrrn2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
hoissrrn2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
hoissrrn2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7288 | . . . . 5 ⊢ (𝐴[,)𝐵) ∈ V | |
2 | 1 | rgenw 3075 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V |
3 | ixpssmapg 8674 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) |
6 | reex 10893 | . . . 4 ⊢ ℝ ∈ V | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
8 | hoissrrn2.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
9 | hoissrrn2.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
10 | hoissrrn2.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) | |
11 | icossre 13089 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | |
12 | 9, 10, 11 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴[,)𝐵) ⊆ ℝ) |
13 | 12 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → (𝐴[,)𝐵) ⊆ ℝ)) |
14 | 8, 13 | ralrimi 3139 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
15 | iunss 4971 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) | |
16 | 14, 15 | sylibr 233 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
17 | mapss 8635 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
18 | 7, 16, 17 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
19 | 5, 18 | sstrd 3927 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∪ ciun 4921 (class class class)co 7255 ↑m cmap 8573 Xcixp 8643 ℝcr 10801 ℝ*cxr 10939 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 |
This theorem is referenced by: ovnhoilem1 44029 ovnhoilem2 44030 ovnhoi 44031 hoiqssbllem2 44051 |
Copyright terms: Public domain | W3C validator |