Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoissrrn2 Structured version   Visualization version   GIF version

Theorem hoissrrn2 46686
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoissrrn2.kph 𝑘𝜑
hoissrrn2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoissrrn2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
hoissrrn2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem hoissrrn2
StepHypRef Expression
1 ovex 7379 . . . . 5 (𝐴[,)𝐵) ∈ V
21rgenw 3051 . . . 4 𝑘𝑋 (𝐴[,)𝐵) ∈ V
3 ixpssmapg 8852 . . . 4 (∀𝑘𝑋 (𝐴[,)𝐵) ∈ V → X𝑘𝑋 (𝐴[,)𝐵) ⊆ ( 𝑘𝑋 (𝐴[,)𝐵) ↑m 𝑋))
42, 3ax-mp 5 . . 3 X𝑘𝑋 (𝐴[,)𝐵) ⊆ ( 𝑘𝑋 (𝐴[,)𝐵) ↑m 𝑋)
54a1i 11 . 2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ⊆ ( 𝑘𝑋 (𝐴[,)𝐵) ↑m 𝑋))
6 reex 11097 . . . 4 ℝ ∈ V
76a1i 11 . . 3 (𝜑 → ℝ ∈ V)
8 hoissrrn2.kph . . . . 5 𝑘𝜑
9 hoissrrn2.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
10 hoissrrn2.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
11 icossre 13328 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
129, 10, 11syl2anc 584 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴[,)𝐵) ⊆ ℝ)
1312ex 412 . . . . 5 (𝜑 → (𝑘𝑋 → (𝐴[,)𝐵) ⊆ ℝ))
148, 13ralrimi 3230 . . . 4 (𝜑 → ∀𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ)
15 iunss 4992 . . . 4 ( 𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ ↔ ∀𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ)
1614, 15sylibr 234 . . 3 (𝜑 𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ)
17 mapss 8813 . . 3 ((ℝ ∈ V ∧ 𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ) → ( 𝑘𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
187, 16, 17syl2anc 584 . 2 (𝜑 → ( 𝑘𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋))
195, 18sstrd 3940 1 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1784  wcel 2111  wral 3047  Vcvv 3436  wss 3897   ciun 4939  (class class class)co 7346  m cmap 8750  Xcixp 8821  cr 11005  *cxr 11145  [,)cico 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251
This theorem is referenced by:  ovnhoilem1  46709  ovnhoilem2  46710  ovnhoi  46711  hoiqssbllem2  46731
  Copyright terms: Public domain W3C validator