| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoissrrn2 | Structured version Visualization version GIF version | ||
| Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| Ref | Expression |
|---|---|
| hoissrrn2.kph | ⊢ Ⅎ𝑘𝜑 |
| hoissrrn2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| hoissrrn2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| hoissrrn2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7402 | . . . . 5 ⊢ (𝐴[,)𝐵) ∈ V | |
| 2 | 1 | rgenw 3048 | . . . 4 ⊢ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V |
| 3 | ixpssmapg 8878 | . . . 4 ⊢ (∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ∈ V → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋)) |
| 6 | reex 11135 | . . . 4 ⊢ ℝ ∈ V | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → ℝ ∈ V) |
| 8 | hoissrrn2.kph | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 9 | hoissrrn2.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 10 | hoissrrn2.b | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ*) | |
| 11 | icossre 13365 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴[,)𝐵) ⊆ ℝ) |
| 13 | 12 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑋 → (𝐴[,)𝐵) ⊆ ℝ)) |
| 14 | 8, 13 | ralrimi 3233 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
| 15 | iunss 5004 | . . . 4 ⊢ (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ ↔ ∀𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) | |
| 16 | 14, 15 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) |
| 17 | mapss 8839 | . . 3 ⊢ ((ℝ ∈ V ∧ ∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ ℝ) → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) | |
| 18 | 7, 16, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝑋 (𝐴[,)𝐵) ↑m 𝑋) ⊆ (ℝ ↑m 𝑋)) |
| 19 | 5, 18 | sstrd 3954 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑m 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ∪ ciun 4951 (class class class)co 7369 ↑m cmap 8776 Xcixp 8847 ℝcr 11043 ℝ*cxr 11183 [,)cico 13284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ico 13288 |
| This theorem is referenced by: ovnhoilem1 46592 ovnhoilem2 46593 ovnhoi 46594 hoiqssbllem2 46614 |
| Copyright terms: Public domain | W3C validator |