Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoissrrn2 Structured version   Visualization version   GIF version

Theorem hoissrrn2 42402
Description: A half-open interval is a subset of R^n . (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoissrrn2.kph 𝑘𝜑
hoissrrn2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
hoissrrn2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
hoissrrn2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑𝑚 𝑋))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem hoissrrn2
StepHypRef Expression
1 ovex 7048 . . . . 5 (𝐴[,)𝐵) ∈ V
21rgenw 3117 . . . 4 𝑘𝑋 (𝐴[,)𝐵) ∈ V
3 ixpssmapg 8340 . . . 4 (∀𝑘𝑋 (𝐴[,)𝐵) ∈ V → X𝑘𝑋 (𝐴[,)𝐵) ⊆ ( 𝑘𝑋 (𝐴[,)𝐵) ↑𝑚 𝑋))
42, 3ax-mp 5 . . 3 X𝑘𝑋 (𝐴[,)𝐵) ⊆ ( 𝑘𝑋 (𝐴[,)𝐵) ↑𝑚 𝑋)
54a1i 11 . 2 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ⊆ ( 𝑘𝑋 (𝐴[,)𝐵) ↑𝑚 𝑋))
6 reex 10474 . . . 4 ℝ ∈ V
76a1i 11 . . 3 (𝜑 → ℝ ∈ V)
8 hoissrrn2.kph . . . . 5 𝑘𝜑
9 hoissrrn2.a . . . . . . 7 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
10 hoissrrn2.b . . . . . . 7 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ*)
11 icossre 12667 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
129, 10, 11syl2anc 584 . . . . . 6 ((𝜑𝑘𝑋) → (𝐴[,)𝐵) ⊆ ℝ)
1312ex 413 . . . . 5 (𝜑 → (𝑘𝑋 → (𝐴[,)𝐵) ⊆ ℝ))
148, 13ralrimi 3183 . . . 4 (𝜑 → ∀𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ)
15 iunss 4868 . . . 4 ( 𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ ↔ ∀𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ)
1614, 15sylibr 235 . . 3 (𝜑 𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ)
17 mapss 8302 . . 3 ((ℝ ∈ V ∧ 𝑘𝑋 (𝐴[,)𝐵) ⊆ ℝ) → ( 𝑘𝑋 (𝐴[,)𝐵) ↑𝑚 𝑋) ⊆ (ℝ ↑𝑚 𝑋))
187, 16, 17syl2anc 584 . 2 (𝜑 → ( 𝑘𝑋 (𝐴[,)𝐵) ↑𝑚 𝑋) ⊆ (ℝ ↑𝑚 𝑋))
195, 18sstrd 3899 1 (𝜑X𝑘𝑋 (𝐴[,)𝐵) ⊆ (ℝ ↑𝑚 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1765  wcel 2081  wral 3105  Vcvv 3437  wss 3859   ciun 4825  (class class class)co 7016  𝑚 cmap 8256  Xcixp 8310  cr 10382  *cxr 10520  [,)cico 12590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-pre-lttri 10457  ax-pre-lttrn 10458
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-er 8139  df-map 8258  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-ico 12594
This theorem is referenced by:  ovnhoilem1  42425  ovnhoilem2  42426  ovnhoi  42427  hoiqssbllem2  42447
  Copyright terms: Public domain W3C validator