MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0sep Structured version   Visualization version   GIF version

Theorem r0sep 22284
Description: The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
r0sep (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem r0sep
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . 4 (𝑧𝑋 ↦ {𝑤𝐽𝑧𝑤}) = (𝑧𝑋 ↦ {𝑤𝐽𝑧𝑤})
21isr0 22273 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))))
32biimpa 477 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
4 eleq1 2897 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑜𝐴𝑜))
54imbi1d 343 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
65ralbidv 3194 . . . 4 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
74bibi1d 345 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
87ralbidv 3194 . . . 4 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
96, 8imbi12d 346 . . 3 (𝑥 = 𝐴 → ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)) ↔ (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → ∀𝑜𝐽 (𝐴𝑜𝑦𝑜))))
10 eleq1 2897 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑜𝐵𝑜))
1110imbi2d 342 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1211ralbidv 3194 . . . 4 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
1310bibi2d 344 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1413ralbidv 3194 . . . 4 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
1512, 14imbi12d 346 . . 3 (𝑦 = 𝐵 → ((∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)) ↔ (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))))
169, 15rspc2v 3630 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))))
173, 16mpan9 507 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  {crab 3139  cmpt 5137  cfv 6348  TopOnctopon 21446  Frect1 21843  KQckq 22229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8397  df-topgen 16705  df-qtop 16768  df-top 21430  df-topon 21447  df-cld 21555  df-cn 21763  df-t1 21850  df-kq 22230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator