| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r0sep | Structured version Visualization version GIF version | ||
| Description: The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| r0sep | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤}) = (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤}) | |
| 2 | 1 | isr0 23680 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)))) |
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
| 4 | eleq1 2823 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)) | |
| 5 | 4 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
| 6 | 5 | ralbidv 3164 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
| 7 | 4 | bibi1d 343 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
| 8 | 7 | ralbidv 3164 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
| 9 | 6, 8 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)))) |
| 10 | eleq1 2823 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | |
| 11 | 10 | imbi2d 340 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
| 12 | 11 | ralbidv 3164 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
| 13 | 10 | bibi2d 342 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
| 14 | 13 | ralbidv 3164 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
| 15 | 12, 14 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → ((∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)))) |
| 16 | 9, 15 | rspc2v 3617 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)))) |
| 17 | 3, 16 | mpan9 506 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ↦ cmpt 5206 ‘cfv 6536 TopOnctopon 22853 Frect1 23250 KQckq 23636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-topgen 17462 df-qtop 17526 df-top 22837 df-topon 22854 df-cld 22962 df-cn 23170 df-t1 23257 df-kq 23637 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |