MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0sep Structured version   Visualization version   GIF version

Theorem r0sep 23772
Description: The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
r0sep (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem r0sep
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (𝑧𝑋 ↦ {𝑤𝐽𝑧𝑤}) = (𝑧𝑋 ↦ {𝑤𝐽𝑧𝑤})
21isr0 23761 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))))
32biimpa 476 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
4 eleq1 2827 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑜𝐴𝑜))
54imbi1d 341 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
65ralbidv 3176 . . . 4 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
74bibi1d 343 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
87ralbidv 3176 . . . 4 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
96, 8imbi12d 344 . . 3 (𝑥 = 𝐴 → ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)) ↔ (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → ∀𝑜𝐽 (𝐴𝑜𝑦𝑜))))
10 eleq1 2827 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑜𝐵𝑜))
1110imbi2d 340 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1211ralbidv 3176 . . . 4 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
1310bibi2d 342 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1413ralbidv 3176 . . . 4 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
1512, 14imbi12d 344 . . 3 (𝑦 = 𝐵 → ((∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)) ↔ (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))))
169, 15rspc2v 3633 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))))
173, 16mpan9 506 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cmpt 5231  cfv 6563  TopOnctopon 22932  Frect1 23331  KQckq 23717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-topgen 17490  df-qtop 17554  df-top 22916  df-topon 22933  df-cld 23043  df-cn 23251  df-t1 23338  df-kq 23718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator