![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r0sep | Structured version Visualization version GIF version |
Description: The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
r0sep | ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤}) = (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤}) | |
2 | 1 | isr0 23761 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)))) |
3 | 2 | biimpa 476 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
4 | eleq1 2827 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜)) | |
5 | 4 | imbi1d 341 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
6 | 5 | ralbidv 3176 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜))) |
7 | 4 | bibi1d 343 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
8 | 7 | ralbidv 3176 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜))) |
9 | 6, 8 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)))) |
10 | eleq1 2827 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)) | |
11 | 10 | imbi2d 340 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
12 | 11 | ralbidv 3176 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
13 | 10 | bibi2d 342 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
14 | 13 | ralbidv 3176 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
15 | 12, 14 | imbi12d 344 | . . 3 ⊢ (𝑦 = 𝐵 → ((∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) ↔ (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)))) |
16 | 9, 15 | rspc2v 3633 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜)))) |
17 | 3, 16 | mpan9 506 | 1 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ↦ cmpt 5231 ‘cfv 6563 TopOnctopon 22932 Frect1 23331 KQckq 23717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-topgen 17490 df-qtop 17554 df-top 22916 df-topon 22933 df-cld 23043 df-cn 23251 df-t1 23338 df-kq 23718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |