MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnlej Structured version   Visualization version   GIF version

Theorem latnlej 18415
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latnlej ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ¬ 𝑋 (𝑌 𝑍)) → (𝑋𝑌𝑋𝑍))

Proof of Theorem latnlej
StepHypRef Expression
1 latlej.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latlej.l . . . . . . 7 = (le‘𝐾)
3 latlej.j . . . . . . 7 = (join‘𝐾)
41, 2, 3latlej1 18407 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌 (𝑌 𝑍))
543adant3r1 1183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 (𝑌 𝑍))
6 breq1 5110 . . . . 5 (𝑋 = 𝑌 → (𝑋 (𝑌 𝑍) ↔ 𝑌 (𝑌 𝑍)))
75, 6syl5ibrcom 247 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑌𝑋 (𝑌 𝑍)))
87necon3bd 2939 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → 𝑋𝑌))
91, 2, 3latlej2 18408 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍 (𝑌 𝑍))
1093adant3r1 1183 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 (𝑌 𝑍))
11 breq1 5110 . . . . 5 (𝑋 = 𝑍 → (𝑋 (𝑌 𝑍) ↔ 𝑍 (𝑌 𝑍)))
1210, 11syl5ibrcom 247 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍𝑋 (𝑌 𝑍)))
1312necon3bd 2939 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → 𝑋𝑍))
148, 13jcad 512 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → (𝑋𝑌𝑋𝑍)))
15143impia 1117 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ¬ 𝑋 (𝑌 𝑍)) → (𝑋𝑌𝑋𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-lub 18305  df-join 18307  df-lat 18391
This theorem is referenced by:  latnlej1l  18416  latnlej1r  18417
  Copyright terms: Public domain W3C validator