MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latnlej Structured version   Visualization version   GIF version

Theorem latnlej 18456
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latnlej ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ¬ 𝑋 (𝑌 𝑍)) → (𝑋𝑌𝑋𝑍))

Proof of Theorem latnlej
StepHypRef Expression
1 latlej.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latlej.l . . . . . . 7 = (le‘𝐾)
3 latlej.j . . . . . . 7 = (join‘𝐾)
41, 2, 3latlej1 18448 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑌 (𝑌 𝑍))
543adant3r1 1179 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 (𝑌 𝑍))
6 breq1 5152 . . . . 5 (𝑋 = 𝑌 → (𝑋 (𝑌 𝑍) ↔ 𝑌 (𝑌 𝑍)))
75, 6syl5ibrcom 246 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑌𝑋 (𝑌 𝑍)))
87necon3bd 2943 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → 𝑋𝑌))
91, 2, 3latlej2 18449 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → 𝑍 (𝑌 𝑍))
1093adant3r1 1179 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 (𝑌 𝑍))
11 breq1 5152 . . . . 5 (𝑋 = 𝑍 → (𝑋 (𝑌 𝑍) ↔ 𝑍 (𝑌 𝑍)))
1210, 11syl5ibrcom 246 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍𝑋 (𝑌 𝑍)))
1312necon3bd 2943 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → 𝑋𝑍))
148, 13jcad 511 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ 𝑋 (𝑌 𝑍) → (𝑋𝑌𝑋𝑍)))
15143impia 1114 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ ¬ 𝑋 (𝑌 𝑍)) → (𝑋𝑌𝑋𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  Basecbs 17188  lecple 17248  joincjn 18311  Latclat 18431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-lub 18346  df-join 18348  df-lat 18432
This theorem is referenced by:  latnlej1l  18457  latnlej1r  18458
  Copyright terms: Public domain W3C validator