Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latnlej | Structured version Visualization version GIF version |
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latnlej | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latlej1 18166 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑌 ≤ (𝑌 ∨ 𝑍)) |
5 | 4 | 3adant3r1 1181 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ≤ (𝑌 ∨ 𝑍)) |
6 | breq1 5077 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ (𝑌 ∨ 𝑍) ↔ 𝑌 ≤ (𝑌 ∨ 𝑍))) | |
7 | 5, 6 | syl5ibrcom 246 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → 𝑋 ≤ (𝑌 ∨ 𝑍))) |
8 | 7 | necon3bd 2957 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → 𝑋 ≠ 𝑌)) |
9 | 1, 2, 3 | latlej2 18167 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ≤ (𝑌 ∨ 𝑍)) |
10 | 9 | 3adant3r1 1181 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ≤ (𝑌 ∨ 𝑍)) |
11 | breq1 5077 | . . . . 5 ⊢ (𝑋 = 𝑍 → (𝑋 ≤ (𝑌 ∨ 𝑍) ↔ 𝑍 ≤ (𝑌 ∨ 𝑍))) | |
12 | 10, 11 | syl5ibrcom 246 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑍 → 𝑋 ≤ (𝑌 ∨ 𝑍))) |
13 | 12 | necon3bd 2957 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → 𝑋 ≠ 𝑍)) |
14 | 8, 13 | jcad 513 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍))) |
15 | 14 | 3impia 1116 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-lub 18064 df-join 18066 df-lat 18150 |
This theorem is referenced by: latnlej1l 18175 latnlej1r 18176 |
Copyright terms: Public domain | W3C validator |