| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latnlej | Structured version Visualization version GIF version | ||
| Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latnlej | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 4 | 1, 2, 3 | latlej1 18463 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑌 ≤ (𝑌 ∨ 𝑍)) |
| 5 | 4 | 3adant3r1 1183 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ≤ (𝑌 ∨ 𝑍)) |
| 6 | breq1 5127 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ (𝑌 ∨ 𝑍) ↔ 𝑌 ≤ (𝑌 ∨ 𝑍))) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → 𝑋 ≤ (𝑌 ∨ 𝑍))) |
| 8 | 7 | necon3bd 2947 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → 𝑋 ≠ 𝑌)) |
| 9 | 1, 2, 3 | latlej2 18464 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ≤ (𝑌 ∨ 𝑍)) |
| 10 | 9 | 3adant3r1 1183 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ≤ (𝑌 ∨ 𝑍)) |
| 11 | breq1 5127 | . . . . 5 ⊢ (𝑋 = 𝑍 → (𝑋 ≤ (𝑌 ∨ 𝑍) ↔ 𝑍 ≤ (𝑌 ∨ 𝑍))) | |
| 12 | 10, 11 | syl5ibrcom 247 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑍 → 𝑋 ≤ (𝑌 ∨ 𝑍))) |
| 13 | 12 | necon3bd 2947 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → 𝑋 ≠ 𝑍)) |
| 14 | 8, 13 | jcad 512 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍))) |
| 15 | 14 | 3impia 1117 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 lecple 17283 joincjn 18328 Latclat 18446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-lub 18361 df-join 18363 df-lat 18447 |
| This theorem is referenced by: latnlej1l 18472 latnlej1r 18473 |
| Copyright terms: Public domain | W3C validator |