![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latnlej | Structured version Visualization version GIF version |
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latnlej | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latlej1 17375 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑌 ≤ (𝑌 ∨ 𝑍)) |
5 | 4 | 3adant3r1 1234 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ≤ (𝑌 ∨ 𝑍)) |
6 | breq1 4846 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ (𝑌 ∨ 𝑍) ↔ 𝑌 ≤ (𝑌 ∨ 𝑍))) | |
7 | 5, 6 | syl5ibrcom 239 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑌 → 𝑋 ≤ (𝑌 ∨ 𝑍))) |
8 | 7 | necon3bd 2985 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → 𝑋 ≠ 𝑌)) |
9 | 1, 2, 3 | latlej2 17376 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ≤ (𝑌 ∨ 𝑍)) |
10 | 9 | 3adant3r1 1234 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ≤ (𝑌 ∨ 𝑍)) |
11 | breq1 4846 | . . . . 5 ⊢ (𝑋 = 𝑍 → (𝑋 ≤ (𝑌 ∨ 𝑍) ↔ 𝑍 ≤ (𝑌 ∨ 𝑍))) | |
12 | 10, 11 | syl5ibrcom 239 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 = 𝑍 → 𝑋 ≤ (𝑌 ∨ 𝑍))) |
13 | 12 | necon3bd 2985 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → 𝑋 ≠ 𝑍)) |
14 | 8, 13 | jcad 509 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍))) |
15 | 14 | 3impia 1146 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 lecple 16274 joincjn 17259 Latclat 17360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-lub 17289 df-join 17291 df-lat 17361 |
This theorem is referenced by: latnlej1l 17384 latnlej1r 17385 |
Copyright terms: Public domain | W3C validator |