![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latnlej1l | Structured version Visualization version GIF version |
Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latnlej1l | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≠ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latnlej 18481 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) |
5 | 4 | simpld 493 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≠ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 lecple 17273 joincjn 18336 Latclat 18456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-lub 18371 df-join 18373 df-lat 18457 |
This theorem is referenced by: atnlej1 39078 3atlem4 39185 3atlem6 39187 dalemcnes 39349 lhpexle3lem 39710 cdlemd4 39900 cdlemd7 39903 cdleme0e 39916 cdleme3e 39931 cdleme9 39952 cdleme17c 39987 |
Copyright terms: Public domain | W3C validator |