Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-1 Structured version   Visualization version   GIF version

Theorem ps-1 37418
Description: The join of two atoms 𝑅 𝑆 (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))

Proof of Theorem ps-1
StepHypRef Expression
1 oveq1 7262 . . . . . 6 (𝑅 = 𝑃 → (𝑅 𝑆) = (𝑃 𝑆))
21breq2d 5082 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) (𝑃 𝑆)))
31eqeq2d 2749 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) = (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
42, 3imbi12d 344 . . . 4 (𝑅 = 𝑃 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
54eqcoms 2746 . . 3 (𝑃 = 𝑅 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
6 simp3 1136 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑅 𝑆))
7 simp1 1134 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
8 simp21 1204 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
9 simp3l 1199 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
10 ps1.j . . . . . . . . . . . . 13 = (join‘𝐾)
11 ps1.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
1210, 11hlatjcom 37309 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
137, 8, 9, 12syl3anc 1369 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
14133ad2ant1 1131 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑃))
15 hllat 37304 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Lat)
16153ad2ant1 1131 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
17 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘𝐾)
1817, 11atbase 37230 . . . . . . . . . . . . . . . 16 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
198, 18syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃 ∈ (Base‘𝐾))
20 simp22 1205 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
2117, 11atbase 37230 . . . . . . . . . . . . . . . 16 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄 ∈ (Base‘𝐾))
23 simp3r 1200 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
2417, 10, 11hlatjcl 37308 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
257, 9, 23, 24syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ (Base‘𝐾))
26 ps1.l . . . . . . . . . . . . . . . 16 = (le‘𝐾)
2717, 26, 10latjle12 18083 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
2816, 19, 22, 25, 27syl13anc 1370 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
29 simpl 482 . . . . . . . . . . . . . 14 ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) → 𝑃 (𝑅 𝑆))
3028, 29syl6bir 253 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
3130adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
32 simpl1 1189 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝐾 ∈ HL)
33 simpl21 1249 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝐴)
34 simpl3r 1227 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑆𝐴)
35 simpl3l 1226 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑅𝐴)
36 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝑅)
3726, 10, 11hlatexchb1 37334 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3832, 33, 34, 35, 36, 37syl131anc 1381 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3931, 38sylibd 238 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑅 𝑃) = (𝑅 𝑆)))
40393impia 1115 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑅 𝑃) = (𝑅 𝑆))
4114, 40eqtrd 2778 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑆))
426, 41breqtrrd 5098 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑃 𝑅))
43423expia 1119 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) (𝑃 𝑅)))
4417, 10, 11hlatjcl 37308 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
457, 8, 9, 44syl3anc 1369 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4617, 26, 10latjle12 18083 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
4716, 19, 22, 45, 46syl13anc 1370 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
48 simpr 484 . . . . . . . . . 10 ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → 𝑄 (𝑃 𝑅))
49 simp23 1206 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝑄)
5049necomd 2998 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝑃)
5126, 10, 11hlatexchb1 37334 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
527, 20, 9, 8, 50, 51syl131anc 1381 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
5348, 52syl5ib 243 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → (𝑃 𝑄) = (𝑃 𝑅)))
5447, 53sylbird 259 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5554adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5643, 55syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑃 𝑅)))
57563impia 1115 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑃 𝑅))
5857, 41eqtrd 2778 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑅 𝑆))
59583expia 1119 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
6017, 10, 11hlatjcl 37308 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
617, 8, 23, 60syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
6217, 26, 10latjle12 18083 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
6316, 19, 22, 61, 62syl13anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
64 simpr 484 . . . . 5 ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) → 𝑄 (𝑃 𝑆))
6563, 64syl6bir 253 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → 𝑄 (𝑃 𝑆)))
6626, 10, 11hlatexchb1 37334 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑆𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
677, 20, 23, 8, 50, 66syl131anc 1381 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
6865, 67sylibd 238 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆)))
695, 59, 68pm2.61ne 3029 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
7017, 10, 11hlatjcl 37308 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
717, 8, 20, 70syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
7217, 26latref 18074 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑃 𝑄) (𝑃 𝑄))
7316, 71, 72syl2anc 583 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) (𝑃 𝑄))
74 breq2 5074 . . 3 ((𝑃 𝑄) = (𝑅 𝑆) → ((𝑃 𝑄) (𝑃 𝑄) ↔ (𝑃 𝑄) (𝑅 𝑆)))
7573, 74syl5ibcom 244 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) = (𝑅 𝑆) → (𝑃 𝑄) (𝑅 𝑆)))
7669, 75impbid 211 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  2atjlej  37420  hlatexch3N  37421  hlatexch4  37422  2llnjaN  37507  dalem1  37600  lneq2at  37719  2llnma3r  37729  cdleme11c  38202  cdleme11  38211  cdleme35a  38389  cdleme42k  38425  cdlemg8b  38569  cdlemg13a  38592  cdlemg18b  38620  cdlemg42  38670  trljco  38681
  Copyright terms: Public domain W3C validator