Proof of Theorem ps-1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq1 7439 | . . . . . 6
⊢ (𝑅 = 𝑃 → (𝑅 ∨ 𝑆) = (𝑃 ∨ 𝑆)) | 
| 2 | 1 | breq2d 5154 | . . . . 5
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) | 
| 3 | 1 | eqeq2d 2747 | . . . . 5
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) | 
| 4 | 2, 3 | imbi12d 344 | . . . 4
⊢ (𝑅 = 𝑃 → (((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) ↔ ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆)))) | 
| 5 | 4 | eqcoms 2744 | . . 3
⊢ (𝑃 = 𝑅 → (((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) ↔ ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆)))) | 
| 6 |  | simp3 1138 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) | 
| 7 |  | simp1 1136 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ HL) | 
| 8 |  | simp21 1206 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | 
| 9 |  | simp3l 1201 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | 
| 10 |  | ps1.j | . . . . . . . . . . . . 13
⊢  ∨ =
(join‘𝐾) | 
| 11 |  | ps1.a | . . . . . . . . . . . . 13
⊢ 𝐴 = (Atoms‘𝐾) | 
| 12 | 10, 11 | hlatjcom 39370 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) | 
| 13 | 7, 8, 9, 12 | syl3anc 1372 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) | 
| 14 | 13 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) | 
| 15 |  | hllat 39365 | . . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 16 | 15 | 3ad2ant1 1133 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) | 
| 17 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 18 | 17, 11 | atbase 39291 | . . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 19 | 8, 18 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) | 
| 20 |  | simp22 1207 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | 
| 21 | 17, 11 | atbase 39291 | . . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 22 | 20, 21 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) | 
| 23 |  | simp3r 1202 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) | 
| 24 | 17, 10, 11 | hlatjcl 39369 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 25 | 7, 9, 23, 24 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 26 |  | ps1.l | . . . . . . . . . . . . . . . 16
⊢  ≤ =
(le‘𝐾) | 
| 27 | 17, 26, 10 | latjle12 18496 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) | 
| 28 | 16, 19, 22, 25, 27 | syl13anc 1373 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) | 
| 29 |  | simpl 482 | . . . . . . . . . . . . . 14
⊢ ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) → 𝑃 ≤ (𝑅 ∨ 𝑆)) | 
| 30 | 28, 29 | biimtrrdi 254 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → 𝑃 ≤ (𝑅 ∨ 𝑆))) | 
| 31 | 30 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → 𝑃 ≤ (𝑅 ∨ 𝑆))) | 
| 32 |  | simpl1 1191 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝐾 ∈ HL) | 
| 33 |  | simpl21 1251 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑃 ∈ 𝐴) | 
| 34 |  | simpl3r 1229 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑆 ∈ 𝐴) | 
| 35 |  | simpl3l 1228 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑅 ∈ 𝐴) | 
| 36 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑃 ≠ 𝑅) | 
| 37 | 26, 10, 11 | hlatexchb1 39396 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑆) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) | 
| 38 | 32, 33, 34, 35, 36, 37 | syl131anc 1384 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑆) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) | 
| 39 | 31, 38 | sylibd 239 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) | 
| 40 | 39 | 3impia 1117 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆)) | 
| 41 | 14, 40 | eqtrd 2776 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑆)) | 
| 42 | 6, 41 | breqtrrd 5170 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅)) | 
| 43 | 42 | 3expia 1121 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) | 
| 44 | 17, 10, 11 | hlatjcl 39369 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) | 
| 45 | 7, 8, 9, 44 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) | 
| 46 | 17, 26, 10 | latjle12 18496 | . . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) | 
| 47 | 16, 19, 22, 45, 46 | syl13anc 1373 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) | 
| 48 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) → 𝑄 ≤ (𝑃 ∨ 𝑅)) | 
| 49 |  | simp23 1208 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ≠ 𝑄) | 
| 50 | 49 | necomd 2995 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ≠ 𝑃) | 
| 51 | 26, 10, 11 | hlatexchb1 39396 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) | 
| 52 | 7, 20, 9, 8, 50, 51 | syl131anc 1384 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) | 
| 53 | 48, 52 | imbitrid 244 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) | 
| 54 | 47, 53 | sylbird 260 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) | 
| 55 | 54 | adantr 480 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) | 
| 56 | 43, 55 | syld 47 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) | 
| 57 | 56 | 3impia 1117 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) | 
| 58 | 57, 41 | eqtrd 2776 | . . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) | 
| 59 | 58 | 3expia 1121 | . . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) | 
| 60 | 17, 10, 11 | hlatjcl 39369 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 61 | 7, 8, 23, 60 | syl3anc 1372 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) | 
| 62 | 17, 26, 10 | latjle12 18496 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) | 
| 63 | 16, 19, 22, 61, 62 | syl13anc 1373 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) | 
| 64 |  | simpr 484 | . . . . 5
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) → 𝑄 ≤ (𝑃 ∨ 𝑆)) | 
| 65 | 63, 64 | biimtrrdi 254 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → 𝑄 ≤ (𝑃 ∨ 𝑆))) | 
| 66 | 26, 10, 11 | hlatexchb1 39396 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) | 
| 67 | 7, 20, 23, 8, 50, 66 | syl131anc 1384 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) | 
| 68 | 65, 67 | sylibd 239 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) | 
| 69 | 5, 59, 68 | pm2.61ne 3026 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) | 
| 70 | 17, 10, 11 | hlatjcl 39369 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 71 | 7, 8, 20, 70 | syl3anc 1372 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 72 | 17, 26 | latref 18487 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄)) | 
| 73 | 16, 71, 72 | syl2anc 584 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄)) | 
| 74 |  | breq2 5146 | . . 3
⊢ ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) | 
| 75 | 73, 74 | syl5ibcom 245 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) | 
| 76 | 69, 75 | impbid 212 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |