Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-1 Structured version   Visualization version   GIF version

Theorem ps-1 35640
Description: The join of two atoms 𝑅 𝑆 (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))

Proof of Theorem ps-1
StepHypRef Expression
1 oveq1 6931 . . . . . 6 (𝑅 = 𝑃 → (𝑅 𝑆) = (𝑃 𝑆))
21breq2d 4900 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) (𝑃 𝑆)))
31eqeq2d 2788 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) = (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
42, 3imbi12d 336 . . . 4 (𝑅 = 𝑃 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
54eqcoms 2786 . . 3 (𝑃 = 𝑅 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
6 simp3 1129 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑅 𝑆))
7 simp1 1127 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
8 simp21 1220 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
9 simp3l 1215 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
10 ps1.j . . . . . . . . . . . . 13 = (join‘𝐾)
11 ps1.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
1210, 11hlatjcom 35531 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
137, 8, 9, 12syl3anc 1439 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
14133ad2ant1 1124 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑃))
15 hllat 35526 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Lat)
16153ad2ant1 1124 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
17 eqid 2778 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘𝐾)
1817, 11atbase 35452 . . . . . . . . . . . . . . . 16 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
198, 18syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃 ∈ (Base‘𝐾))
20 simp22 1221 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
2117, 11atbase 35452 . . . . . . . . . . . . . . . 16 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄 ∈ (Base‘𝐾))
23 simp3r 1216 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
2417, 10, 11hlatjcl 35530 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
257, 9, 23, 24syl3anc 1439 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ (Base‘𝐾))
26 ps1.l . . . . . . . . . . . . . . . 16 = (le‘𝐾)
2717, 26, 10latjle12 17459 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
2816, 19, 22, 25, 27syl13anc 1440 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
29 simpl 476 . . . . . . . . . . . . . 14 ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) → 𝑃 (𝑅 𝑆))
3028, 29syl6bir 246 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
3130adantr 474 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
32 simpl1 1199 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝐾 ∈ HL)
33 simpl21 1292 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝐴)
34 simpl3r 1260 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑆𝐴)
35 simpl3l 1258 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑅𝐴)
36 simpr 479 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝑅)
3726, 10, 11hlatexchb1 35556 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3832, 33, 34, 35, 36, 37syl131anc 1451 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3931, 38sylibd 231 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑅 𝑃) = (𝑅 𝑆)))
40393impia 1106 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑅 𝑃) = (𝑅 𝑆))
4114, 40eqtrd 2814 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑆))
426, 41breqtrrd 4916 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑃 𝑅))
43423expia 1111 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) (𝑃 𝑅)))
4417, 10, 11hlatjcl 35530 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
457, 8, 9, 44syl3anc 1439 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4617, 26, 10latjle12 17459 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
4716, 19, 22, 45, 46syl13anc 1440 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
48 simpr 479 . . . . . . . . . 10 ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → 𝑄 (𝑃 𝑅))
49 simp23 1222 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝑄)
5049necomd 3024 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝑃)
5126, 10, 11hlatexchb1 35556 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
527, 20, 9, 8, 50, 51syl131anc 1451 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
5348, 52syl5ib 236 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → (𝑃 𝑄) = (𝑃 𝑅)))
5447, 53sylbird 252 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5554adantr 474 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5643, 55syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑃 𝑅)))
57563impia 1106 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑃 𝑅))
5857, 41eqtrd 2814 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑅 𝑆))
59583expia 1111 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
6017, 10, 11hlatjcl 35530 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
617, 8, 23, 60syl3anc 1439 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
6217, 26, 10latjle12 17459 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
6316, 19, 22, 61, 62syl13anc 1440 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
64 simpr 479 . . . . 5 ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) → 𝑄 (𝑃 𝑆))
6563, 64syl6bir 246 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → 𝑄 (𝑃 𝑆)))
6626, 10, 11hlatexchb1 35556 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑆𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
677, 20, 23, 8, 50, 66syl131anc 1451 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
6865, 67sylibd 231 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆)))
695, 59, 68pm2.61ne 3055 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
7017, 10, 11hlatjcl 35530 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
717, 8, 20, 70syl3anc 1439 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
7217, 26latref 17450 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑃 𝑄) (𝑃 𝑄))
7316, 71, 72syl2anc 579 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) (𝑃 𝑄))
74 breq2 4892 . . 3 ((𝑃 𝑄) = (𝑅 𝑆) → ((𝑃 𝑄) (𝑃 𝑄) ↔ (𝑃 𝑄) (𝑅 𝑆)))
7573, 74syl5ibcom 237 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) = (𝑅 𝑆) → (𝑃 𝑄) (𝑅 𝑆)))
7669, 75impbid 204 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16266  lecple 16356  joincjn 17341  Latclat 17442  Atomscatm 35426  HLchlt 35513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-lat 17443  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485  df-hlat 35514
This theorem is referenced by:  2atjlej  35642  hlatexch3N  35643  hlatexch4  35644  2llnjaN  35729  dalem1  35822  lneq2at  35941  2llnma3r  35951  cdleme11c  36424  cdleme11  36433  cdleme35a  36611  cdleme42k  36647  cdlemg8b  36791  cdlemg13a  36814  cdlemg18b  36842  cdlemg42  36892  trljco  36903
  Copyright terms: Public domain W3C validator