Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-1 Structured version   Visualization version   GIF version

Theorem ps-1 36628
Description: The join of two atoms 𝑅 𝑆 (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))

Proof of Theorem ps-1
StepHypRef Expression
1 oveq1 7163 . . . . . 6 (𝑅 = 𝑃 → (𝑅 𝑆) = (𝑃 𝑆))
21breq2d 5078 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) (𝑃 𝑆)))
31eqeq2d 2832 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) = (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
42, 3imbi12d 347 . . . 4 (𝑅 = 𝑃 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
54eqcoms 2829 . . 3 (𝑃 = 𝑅 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
6 simp3 1134 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑅 𝑆))
7 simp1 1132 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
8 simp21 1202 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
9 simp3l 1197 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
10 ps1.j . . . . . . . . . . . . 13 = (join‘𝐾)
11 ps1.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
1210, 11hlatjcom 36519 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
137, 8, 9, 12syl3anc 1367 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
14133ad2ant1 1129 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑃))
15 hllat 36514 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Lat)
16153ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
17 eqid 2821 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘𝐾)
1817, 11atbase 36440 . . . . . . . . . . . . . . . 16 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
198, 18syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃 ∈ (Base‘𝐾))
20 simp22 1203 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
2117, 11atbase 36440 . . . . . . . . . . . . . . . 16 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄 ∈ (Base‘𝐾))
23 simp3r 1198 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
2417, 10, 11hlatjcl 36518 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
257, 9, 23, 24syl3anc 1367 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ (Base‘𝐾))
26 ps1.l . . . . . . . . . . . . . . . 16 = (le‘𝐾)
2717, 26, 10latjle12 17672 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
2816, 19, 22, 25, 27syl13anc 1368 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
29 simpl 485 . . . . . . . . . . . . . 14 ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) → 𝑃 (𝑅 𝑆))
3028, 29syl6bir 256 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
3130adantr 483 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
32 simpl1 1187 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝐾 ∈ HL)
33 simpl21 1247 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝐴)
34 simpl3r 1225 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑆𝐴)
35 simpl3l 1224 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑅𝐴)
36 simpr 487 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝑅)
3726, 10, 11hlatexchb1 36544 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3832, 33, 34, 35, 36, 37syl131anc 1379 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3931, 38sylibd 241 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑅 𝑃) = (𝑅 𝑆)))
40393impia 1113 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑅 𝑃) = (𝑅 𝑆))
4114, 40eqtrd 2856 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑆))
426, 41breqtrrd 5094 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑃 𝑅))
43423expia 1117 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) (𝑃 𝑅)))
4417, 10, 11hlatjcl 36518 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
457, 8, 9, 44syl3anc 1367 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4617, 26, 10latjle12 17672 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
4716, 19, 22, 45, 46syl13anc 1368 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
48 simpr 487 . . . . . . . . . 10 ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → 𝑄 (𝑃 𝑅))
49 simp23 1204 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝑄)
5049necomd 3071 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝑃)
5126, 10, 11hlatexchb1 36544 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
527, 20, 9, 8, 50, 51syl131anc 1379 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
5348, 52syl5ib 246 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → (𝑃 𝑄) = (𝑃 𝑅)))
5447, 53sylbird 262 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5554adantr 483 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5643, 55syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑃 𝑅)))
57563impia 1113 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑃 𝑅))
5857, 41eqtrd 2856 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑅 𝑆))
59583expia 1117 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
6017, 10, 11hlatjcl 36518 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
617, 8, 23, 60syl3anc 1367 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
6217, 26, 10latjle12 17672 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
6316, 19, 22, 61, 62syl13anc 1368 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
64 simpr 487 . . . . 5 ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) → 𝑄 (𝑃 𝑆))
6563, 64syl6bir 256 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → 𝑄 (𝑃 𝑆)))
6626, 10, 11hlatexchb1 36544 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑆𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
677, 20, 23, 8, 50, 66syl131anc 1379 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
6865, 67sylibd 241 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆)))
695, 59, 68pm2.61ne 3102 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
7017, 10, 11hlatjcl 36518 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
717, 8, 20, 70syl3anc 1367 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
7217, 26latref 17663 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑃 𝑄) (𝑃 𝑄))
7316, 71, 72syl2anc 586 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) (𝑃 𝑄))
74 breq2 5070 . . 3 ((𝑃 𝑄) = (𝑅 𝑆) → ((𝑃 𝑄) (𝑃 𝑄) ↔ (𝑃 𝑄) (𝑅 𝑆)))
7573, 74syl5ibcom 247 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) = (𝑅 𝑆) → (𝑃 𝑄) (𝑅 𝑆)))
7669, 75impbid 214 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502
This theorem is referenced by:  2atjlej  36630  hlatexch3N  36631  hlatexch4  36632  2llnjaN  36717  dalem1  36810  lneq2at  36929  2llnma3r  36939  cdleme11c  37412  cdleme11  37421  cdleme35a  37599  cdleme42k  37635  cdlemg8b  37779  cdlemg13a  37802  cdlemg18b  37830  cdlemg42  37880  trljco  37891
  Copyright terms: Public domain W3C validator