Proof of Theorem ps-1
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7417 |
. . . . . 6
⊢ (𝑅 = 𝑃 → (𝑅 ∨ 𝑆) = (𝑃 ∨ 𝑆)) |
| 2 | 1 | breq2d 5136 |
. . . . 5
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
| 3 | 1 | eqeq2d 2747 |
. . . . 5
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
| 4 | 2, 3 | imbi12d 344 |
. . . 4
⊢ (𝑅 = 𝑃 → (((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) ↔ ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆)))) |
| 5 | 4 | eqcoms 2744 |
. . 3
⊢ (𝑃 = 𝑅 → (((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) ↔ ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆)))) |
| 6 | | simp3 1138 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) |
| 7 | | simp1 1136 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ HL) |
| 8 | | simp21 1207 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
| 9 | | simp3l 1202 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ 𝐴) |
| 10 | | ps1.j |
. . . . . . . . . . . . 13
⊢ ∨ =
(join‘𝐾) |
| 11 | | ps1.a |
. . . . . . . . . . . . 13
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | 10, 11 | hlatjcom 39391 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
| 13 | 7, 8, 9, 12 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
| 14 | 13 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
| 15 | | hllat 39386 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 16 | 15 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 17 | | eqid 2736 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 18 | 17, 11 | atbase 39312 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 19 | 8, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
| 20 | | simp22 1208 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 21 | 17, 11 | atbase 39312 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) |
| 23 | | simp3r 1203 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
| 24 | 17, 10, 11 | hlatjcl 39390 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 25 | 7, 9, 23, 24 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 26 | | ps1.l |
. . . . . . . . . . . . . . . 16
⊢ ≤ =
(le‘𝐾) |
| 27 | 17, 26, 10 | latjle12 18465 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
| 28 | 16, 19, 22, 25, 27 | syl13anc 1374 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
| 29 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) → 𝑃 ≤ (𝑅 ∨ 𝑆)) |
| 30 | 28, 29 | biimtrrdi 254 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → 𝑃 ≤ (𝑅 ∨ 𝑆))) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → 𝑃 ≤ (𝑅 ∨ 𝑆))) |
| 32 | | simpl1 1192 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝐾 ∈ HL) |
| 33 | | simpl21 1252 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑃 ∈ 𝐴) |
| 34 | | simpl3r 1230 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑆 ∈ 𝐴) |
| 35 | | simpl3l 1229 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑅 ∈ 𝐴) |
| 36 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑃 ≠ 𝑅) |
| 37 | 26, 10, 11 | hlatexchb1 39417 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑆) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) |
| 38 | 32, 33, 34, 35, 36, 37 | syl131anc 1385 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑆) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) |
| 39 | 31, 38 | sylibd 239 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) |
| 40 | 39 | 3impia 1117 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆)) |
| 41 | 14, 40 | eqtrd 2771 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑆)) |
| 42 | 6, 41 | breqtrrd 5152 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅)) |
| 43 | 42 | 3expia 1121 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) |
| 44 | 17, 10, 11 | hlatjcl 39390 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 45 | 7, 8, 9, 44 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 46 | 17, 26, 10 | latjle12 18465 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) |
| 47 | 16, 19, 22, 45, 46 | syl13anc 1374 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) |
| 48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) → 𝑄 ≤ (𝑃 ∨ 𝑅)) |
| 49 | | simp23 1209 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ≠ 𝑄) |
| 50 | 49 | necomd 2988 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ≠ 𝑃) |
| 51 | 26, 10, 11 | hlatexchb1 39417 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
| 52 | 7, 20, 9, 8, 50, 51 | syl131anc 1385 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
| 53 | 48, 52 | imbitrid 244 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
| 54 | 47, 53 | sylbird 260 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
| 55 | 54 | adantr 480 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
| 56 | 43, 55 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
| 57 | 56 | 3impia 1117 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) |
| 58 | 57, 41 | eqtrd 2771 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) |
| 59 | 58 | 3expia 1121 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |
| 60 | 17, 10, 11 | hlatjcl 39390 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 61 | 7, 8, 23, 60 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 62 | 17, 26, 10 | latjle12 18465 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
| 63 | 16, 19, 22, 61, 62 | syl13anc 1374 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
| 64 | | simpr 484 |
. . . . 5
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) → 𝑄 ≤ (𝑃 ∨ 𝑆)) |
| 65 | 63, 64 | biimtrrdi 254 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → 𝑄 ≤ (𝑃 ∨ 𝑆))) |
| 66 | 26, 10, 11 | hlatexchb1 39417 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
| 67 | 7, 20, 23, 8, 50, 66 | syl131anc 1385 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
| 68 | 65, 67 | sylibd 239 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
| 69 | 5, 59, 68 | pm2.61ne 3018 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |
| 70 | 17, 10, 11 | hlatjcl 39390 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 71 | 7, 8, 20, 70 | syl3anc 1373 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 72 | 17, 26 | latref 18456 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄)) |
| 73 | 16, 71, 72 | syl2anc 584 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄)) |
| 74 | | breq2 5128 |
. . 3
⊢ ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
| 75 | 73, 74 | syl5ibcom 245 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
| 76 | 69, 75 | impbid 212 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |