Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ps-1 Structured version   Visualization version   GIF version

Theorem ps-1 39459
Description: The join of two atoms 𝑅 𝑆 (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.)
Hypotheses
Ref Expression
ps1.l = (le‘𝐾)
ps1.j = (join‘𝐾)
ps1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ps-1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))

Proof of Theorem ps-1
StepHypRef Expression
1 oveq1 7360 . . . . . 6 (𝑅 = 𝑃 → (𝑅 𝑆) = (𝑃 𝑆))
21breq2d 5107 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) (𝑃 𝑆)))
31eqeq2d 2740 . . . . 5 (𝑅 = 𝑃 → ((𝑃 𝑄) = (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
42, 3imbi12d 344 . . . 4 (𝑅 = 𝑃 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
54eqcoms 2737 . . 3 (𝑃 = 𝑅 → (((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)) ↔ ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆))))
6 simp3 1138 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑅 𝑆))
7 simp1 1136 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
8 simp21 1207 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
9 simp3l 1202 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
10 ps1.j . . . . . . . . . . . . 13 = (join‘𝐾)
11 ps1.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
1210, 11hlatjcom 39349 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
137, 8, 9, 12syl3anc 1373 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) = (𝑅 𝑃))
14133ad2ant1 1133 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑃))
15 hllat 39344 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Lat)
16153ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
17 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘𝐾) = (Base‘𝐾)
1817, 11atbase 39270 . . . . . . . . . . . . . . . 16 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
198, 18syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃 ∈ (Base‘𝐾))
20 simp22 1208 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
2117, 11atbase 39270 . . . . . . . . . . . . . . . 16 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄 ∈ (Base‘𝐾))
23 simp3r 1203 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
2417, 10, 11hlatjcl 39348 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
257, 9, 23, 24syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 𝑆) ∈ (Base‘𝐾))
26 ps1.l . . . . . . . . . . . . . . . 16 = (le‘𝐾)
2717, 26, 10latjle12 18374 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
2816, 19, 22, 25, 27syl13anc 1374 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) ↔ (𝑃 𝑄) (𝑅 𝑆)))
29 simpl 482 . . . . . . . . . . . . . 14 ((𝑃 (𝑅 𝑆) ∧ 𝑄 (𝑅 𝑆)) → 𝑃 (𝑅 𝑆))
3028, 29biimtrrdi 254 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
3130adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → 𝑃 (𝑅 𝑆)))
32 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝐾 ∈ HL)
33 simpl21 1252 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝐴)
34 simpl3r 1230 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑆𝐴)
35 simpl3l 1229 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑅𝐴)
36 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → 𝑃𝑅)
3726, 10, 11hlatexchb1 39375 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3832, 33, 34, 35, 36, 37syl131anc 1385 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑆) ↔ (𝑅 𝑃) = (𝑅 𝑆)))
3931, 38sylibd 239 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑅 𝑃) = (𝑅 𝑆)))
40393impia 1117 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑅 𝑃) = (𝑅 𝑆))
4114, 40eqtrd 2764 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑅) = (𝑅 𝑆))
426, 41breqtrrd 5123 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) (𝑃 𝑅))
43423expia 1121 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) (𝑃 𝑅)))
4417, 10, 11hlatjcl 39348 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) ∈ (Base‘𝐾))
457, 8, 9, 44syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑅) ∈ (Base‘𝐾))
4617, 26, 10latjle12 18374 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
4716, 19, 22, 45, 46syl13anc 1374 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) ↔ (𝑃 𝑄) (𝑃 𝑅)))
48 simpr 484 . . . . . . . . . 10 ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → 𝑄 (𝑃 𝑅))
49 simp23 1209 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝑄)
5049necomd 2980 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝑃)
5126, 10, 11hlatexchb1 39375 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
527, 20, 9, 8, 50, 51syl131anc 1385 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑅) ↔ (𝑃 𝑄) = (𝑃 𝑅)))
5348, 52imbitrid 244 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑅) ∧ 𝑄 (𝑃 𝑅)) → (𝑃 𝑄) = (𝑃 𝑅)))
5447, 53sylbird 260 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5554adantr 480 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑃 𝑅) → (𝑃 𝑄) = (𝑃 𝑅)))
5643, 55syld 47 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑃 𝑅)))
57563impia 1117 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑃 𝑅))
5857, 41eqtrd 2764 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅 ∧ (𝑃 𝑄) (𝑅 𝑆)) → (𝑃 𝑄) = (𝑅 𝑆))
59583expia 1121 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃𝑅) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
6017, 10, 11hlatjcl 39348 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
617, 8, 23, 60syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
6217, 26, 10latjle12 18374 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
6316, 19, 22, 61, 62syl13anc 1374 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) ↔ (𝑃 𝑄) (𝑃 𝑆)))
64 simpr 484 . . . . 5 ((𝑃 (𝑃 𝑆) ∧ 𝑄 (𝑃 𝑆)) → 𝑄 (𝑃 𝑆))
6563, 64biimtrrdi 254 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → 𝑄 (𝑃 𝑆)))
6626, 10, 11hlatexchb1 39375 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑆𝐴𝑃𝐴) ∧ 𝑄𝑃) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
677, 20, 23, 8, 50, 66syl131anc 1385 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 (𝑃 𝑆) ↔ (𝑃 𝑄) = (𝑃 𝑆)))
6865, 67sylibd 239 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑃 𝑆) → (𝑃 𝑄) = (𝑃 𝑆)))
695, 59, 68pm2.61ne 3010 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) → (𝑃 𝑄) = (𝑅 𝑆)))
7017, 10, 11hlatjcl 39348 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
717, 8, 20, 70syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
7217, 26latref 18365 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑃 𝑄) (𝑃 𝑄))
7316, 71, 72syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) (𝑃 𝑄))
74 breq2 5099 . . 3 ((𝑃 𝑄) = (𝑅 𝑆) → ((𝑃 𝑄) (𝑃 𝑄) ↔ (𝑃 𝑄) (𝑅 𝑆)))
7573, 74syl5ibcom 245 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) = (𝑅 𝑆) → (𝑃 𝑄) (𝑅 𝑆)))
7669, 75impbid 212 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆) ↔ (𝑃 𝑄) = (𝑅 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  Latclat 18355  Atomscatm 39244  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  2atjlej  39461  hlatexch3N  39462  hlatexch4  39463  2llnjaN  39548  dalem1  39641  lneq2at  39760  2llnma3r  39770  cdleme11c  40243  cdleme11  40252  cdleme35a  40430  cdleme42k  40466  cdlemg8b  40610  cdlemg13a  40633  cdlemg18b  40661  cdlemg42  40711  trljco  40722
  Copyright terms: Public domain W3C validator