Proof of Theorem ps-1
Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . . . 6
⊢ (𝑅 = 𝑃 → (𝑅 ∨ 𝑆) = (𝑃 ∨ 𝑆)) |
2 | 1 | breq2d 5082 |
. . . . 5
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
3 | 1 | eqeq2d 2749 |
. . . . 5
⊢ (𝑅 = 𝑃 → ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
4 | 2, 3 | imbi12d 344 |
. . . 4
⊢ (𝑅 = 𝑃 → (((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) ↔ ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆)))) |
5 | 4 | eqcoms 2746 |
. . 3
⊢ (𝑃 = 𝑅 → (((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) ↔ ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆)))) |
6 | | simp3 1136 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) |
7 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ HL) |
8 | | simp21 1204 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
9 | | simp3l 1199 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ 𝐴) |
10 | | ps1.j |
. . . . . . . . . . . . 13
⊢ ∨ =
(join‘𝐾) |
11 | | ps1.a |
. . . . . . . . . . . . 13
⊢ 𝐴 = (Atoms‘𝐾) |
12 | 10, 11 | hlatjcom 37309 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
13 | 7, 8, 9, 12 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
14 | 13 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃)) |
15 | | hllat 37304 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
17 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘𝐾) =
(Base‘𝐾) |
18 | 17, 11 | atbase 37230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
19 | 8, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
20 | | simp22 1205 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
21 | 17, 11 | atbase 37230 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) |
23 | | simp3r 1200 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) |
24 | 17, 10, 11 | hlatjcl 37308 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
25 | 7, 9, 23, 24 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
26 | | ps1.l |
. . . . . . . . . . . . . . . 16
⊢ ≤ =
(le‘𝐾) |
27 | 17, 26, 10 | latjle12 18083 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
28 | 16, 19, 22, 25, 27 | syl13anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
29 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ≤ (𝑅 ∨ 𝑆) ∧ 𝑄 ≤ (𝑅 ∨ 𝑆)) → 𝑃 ≤ (𝑅 ∨ 𝑆)) |
30 | 28, 29 | syl6bir 253 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → 𝑃 ≤ (𝑅 ∨ 𝑆))) |
31 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → 𝑃 ≤ (𝑅 ∨ 𝑆))) |
32 | | simpl1 1189 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝐾 ∈ HL) |
33 | | simpl21 1249 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑃 ∈ 𝐴) |
34 | | simpl3r 1227 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑆 ∈ 𝐴) |
35 | | simpl3l 1226 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑅 ∈ 𝐴) |
36 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → 𝑃 ≠ 𝑅) |
37 | 26, 10, 11 | hlatexchb1 37334 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑆) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) |
38 | 32, 33, 34, 35, 36, 37 | syl131anc 1381 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → (𝑃 ≤ (𝑅 ∨ 𝑆) ↔ (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) |
39 | 31, 38 | sylibd 238 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆))) |
40 | 39 | 3impia 1115 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑆)) |
41 | 14, 40 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑆)) |
42 | 6, 41 | breqtrrd 5098 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅)) |
43 | 42 | 3expia 1119 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) |
44 | 17, 10, 11 | hlatjcl 37308 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
45 | 7, 8, 9, 44 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑅) ∈ (Base‘𝐾)) |
46 | 17, 26, 10 | latjle12 18083 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑅) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) |
47 | 16, 19, 22, 45, 46 | syl13anc 1370 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅))) |
48 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) → 𝑄 ≤ (𝑃 ∨ 𝑅)) |
49 | | simp23 1206 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ≠ 𝑄) |
50 | 49 | necomd 2998 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ≠ 𝑃) |
51 | 26, 10, 11 | hlatexchb1 37334 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
52 | 7, 20, 9, 8, 50, 51 | syl131anc 1381 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑅) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
53 | 48, 52 | syl5ib 243 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑅) ∧ 𝑄 ≤ (𝑃 ∨ 𝑅)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
54 | 47, 53 | sylbird 259 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
55 | 54 | adantr 480 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑅) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
56 | 43, 55 | syld 47 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅))) |
57 | 56 | 3impia 1115 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑅)) |
58 | 57, 41 | eqtrd 2778 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅 ∧ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆)) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆)) |
59 | 58 | 3expia 1119 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑅) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |
60 | 17, 10, 11 | hlatjcl 37308 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
61 | 7, 8, 23, 60 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
62 | 17, 26, 10 | latjle12 18083 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
63 | 16, 19, 22, 61, 62 | syl13anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) ↔ (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆))) |
64 | | simpr 484 |
. . . . 5
⊢ ((𝑃 ≤ (𝑃 ∨ 𝑆) ∧ 𝑄 ≤ (𝑃 ∨ 𝑆)) → 𝑄 ≤ (𝑃 ∨ 𝑆)) |
65 | 63, 64 | syl6bir 253 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → 𝑄 ≤ (𝑃 ∨ 𝑆))) |
66 | 26, 10, 11 | hlatexchb1 37334 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑄 ≠ 𝑃) → (𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
67 | 7, 20, 23, 8, 50, 66 | syl131anc 1381 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
68 | 65, 67 | sylibd 238 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑃 ∨ 𝑆))) |
69 | 5, 59, 68 | pm2.61ne 3029 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |
70 | 17, 10, 11 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
71 | 7, 8, 20, 70 | syl3anc 1369 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
72 | 17, 26 | latref 18074 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄)) |
73 | 16, 71, 72 | syl2anc 583 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄)) |
74 | | breq2 5074 |
. . 3
⊢ ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) → ((𝑃 ∨ 𝑄) ≤ (𝑃 ∨ 𝑄) ↔ (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
75 | 73, 74 | syl5ibcom 244 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆) → (𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆))) |
76 | 69, 75 | impbid 211 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ≤ (𝑅 ∨ 𝑆) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑆))) |