![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeetbclemN | Structured version Visualization version GIF version |
Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dihmeetc.b | ⊢ 𝐵 = (Base‘𝐾) |
dihmeetc.l | ⊢ ≤ = (le‘𝐾) |
dihmeetc.m | ⊢ ∧ = (meet‘𝐾) |
dihmeetc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihmeetc.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dihmeetbclemN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = (((𝐼‘𝑋) ∩ (𝐼‘𝑌)) ∩ (𝐼‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝑋 ∧ 𝑌) ≤ 𝑊) | |
2 | simp1l 1197 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝐾 ∈ HL) | |
3 | 2 | hllatd 37826 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝐾 ∈ Lat) |
4 | simp2l 1199 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝑋 ∈ 𝐵) | |
5 | simp2r 1200 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝑌 ∈ 𝐵) | |
6 | dihmeetc.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐾) | |
7 | dihmeetc.m | . . . . . . . . 9 ⊢ ∧ = (meet‘𝐾) | |
8 | 6, 7 | latmcl 18329 | . . . . . . . 8 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
9 | 3, 4, 5, 8 | syl3anc 1371 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
10 | simp1r 1198 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝑊 ∈ 𝐻) | |
11 | dihmeetc.h | . . . . . . . . 9 ⊢ 𝐻 = (LHyp‘𝐾) | |
12 | 6, 11 | lhpbase 38461 | . . . . . . . 8 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
13 | 10, 12 | syl 17 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝑊 ∈ 𝐵) |
14 | dihmeetc.l | . . . . . . . 8 ⊢ ≤ = (le‘𝐾) | |
15 | 6, 14, 7 | latleeqm1 18356 | . . . . . . 7 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑋 ∧ 𝑌) ≤ 𝑊 ↔ ((𝑋 ∧ 𝑌) ∧ 𝑊) = (𝑋 ∧ 𝑌))) |
16 | 3, 9, 13, 15 | syl3anc 1371 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → ((𝑋 ∧ 𝑌) ≤ 𝑊 ↔ ((𝑋 ∧ 𝑌) ∧ 𝑊) = (𝑋 ∧ 𝑌))) |
17 | 1, 16 | mpbid 231 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → ((𝑋 ∧ 𝑌) ∧ 𝑊) = (𝑋 ∧ 𝑌)) |
18 | hlol 37823 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
19 | 2, 18 | syl 17 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝐾 ∈ OL) |
20 | 6, 7 | latmassOLD 37691 | . . . . . 6 ⊢ ((𝐾 ∈ OL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ∧ 𝑌) ∧ 𝑊) = (𝑋 ∧ (𝑌 ∧ 𝑊))) |
21 | 19, 4, 5, 13, 20 | syl13anc 1372 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → ((𝑋 ∧ 𝑌) ∧ 𝑊) = (𝑋 ∧ (𝑌 ∧ 𝑊))) |
22 | 17, 21 | eqtr3d 2778 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑌 ∧ 𝑊))) |
23 | 22 | fveq2d 6846 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = (𝐼‘(𝑋 ∧ (𝑌 ∧ 𝑊)))) |
24 | simp1 1136 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
25 | 6, 7 | latmcl 18329 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
26 | 3, 5, 13, 25 | syl3anc 1371 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
27 | 6, 14, 7 | latmle2 18354 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
28 | 3, 5, 13, 27 | syl3anc 1371 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝑌 ∧ 𝑊) ≤ 𝑊) |
29 | dihmeetc.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
30 | 6, 14, 7, 11, 29 | dihmeetbN 39766 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ ((𝑌 ∧ 𝑊) ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ≤ 𝑊)) → (𝐼‘(𝑋 ∧ (𝑌 ∧ 𝑊))) = ((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∧ 𝑊)))) |
31 | 24, 4, 26, 28, 30 | syl112anc 1374 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ (𝑌 ∧ 𝑊))) = ((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∧ 𝑊)))) |
32 | 6, 14 | latref 18330 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵) → 𝑊 ≤ 𝑊) |
33 | 3, 13, 32 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → 𝑊 ≤ 𝑊) |
34 | 6, 14, 7, 11, 29 | dihmeetbN 39766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝐵 ∧ (𝑊 ∈ 𝐵 ∧ 𝑊 ≤ 𝑊)) → (𝐼‘(𝑌 ∧ 𝑊)) = ((𝐼‘𝑌) ∩ (𝐼‘𝑊))) |
35 | 24, 5, 13, 33, 34 | syl112anc 1374 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑌 ∧ 𝑊)) = ((𝐼‘𝑌) ∩ (𝐼‘𝑊))) |
36 | 35 | ineq2d 4172 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → ((𝐼‘𝑋) ∩ (𝐼‘(𝑌 ∧ 𝑊))) = ((𝐼‘𝑋) ∩ ((𝐼‘𝑌) ∩ (𝐼‘𝑊)))) |
37 | 23, 31, 36 | 3eqtrd 2780 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ ((𝐼‘𝑌) ∩ (𝐼‘𝑊)))) |
38 | inass 4179 | . 2 ⊢ (((𝐼‘𝑋) ∩ (𝐼‘𝑌)) ∩ (𝐼‘𝑊)) = ((𝐼‘𝑋) ∩ ((𝐼‘𝑌) ∩ (𝐼‘𝑊))) | |
39 | 37, 38 | eqtr4di 2794 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → (𝐼‘(𝑋 ∧ 𝑌)) = (((𝐼‘𝑋) ∩ (𝐼‘𝑌)) ∩ (𝐼‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∩ cin 3909 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 lecple 17140 meetcmee 18201 Latclat 18320 OLcol 37636 HLchlt 37812 LHypclh 38447 DIsoHcdih 39691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-riotaBAD 37415 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-undef 8204 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-0g 17323 df-proset 18184 df-poset 18202 df-plt 18219 df-lub 18235 df-glb 18236 df-join 18237 df-meet 18238 df-p0 18314 df-p1 18315 df-lat 18321 df-clat 18388 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-cntz 19097 df-lsm 19418 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-drng 20187 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lvec 20564 df-oposet 37638 df-ol 37640 df-oml 37641 df-covers 37728 df-ats 37729 df-atl 37760 df-cvlat 37784 df-hlat 37813 df-llines 37961 df-lplanes 37962 df-lvols 37963 df-lines 37964 df-psubsp 37966 df-pmap 37967 df-padd 38259 df-lhyp 38451 df-laut 38452 df-ldil 38567 df-ltrn 38568 df-trl 38622 df-tendo 39218 df-edring 39220 df-disoa 39492 df-dvech 39542 df-dib 39602 df-dic 39636 df-dih 39692 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |