Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3at Structured version   Visualization version   GIF version

Theorem 3at 36641
Description: Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 36628 for lines and 4at 36764 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3at (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))

Proof of Theorem 3at
StepHypRef Expression
1 3at.l . . . 4 = (le‘𝐾)
2 3at.j . . . 4 = (join‘𝐾)
3 3at.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33atlem7 36640 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
543expia 1117 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
6 hllat 36514 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 simpl 485 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
8 simpr1 1190 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
9 eqid 2821 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
109, 3atbase 36440 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
118, 10syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
12 simpr2 1191 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
139, 3atbase 36440 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
159, 2latjcl 17661 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
167, 11, 14, 15syl3anc 1367 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
17 simpr3 1192 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
189, 3atbase 36440 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
209, 2latjcl 17661 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
217, 16, 19, 20syl3anc 1367 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
229, 1latref 17663 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
2321, 22syldan 593 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
24 breq2 5070 . . . . . 6 (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2523, 24syl5ibcom 247 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
266, 25sylan 582 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
27263adant3 1128 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2827adantr 483 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
295, 28impbid 214 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502
This theorem is referenced by:  llncvrlpln2  36708  2lplnja  36770
  Copyright terms: Public domain W3C validator