Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3at Structured version   Visualization version   GIF version

Theorem 3at 39484
Description: Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 39471 for lines and 4at 39607 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3at (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))

Proof of Theorem 3at
StepHypRef Expression
1 3at.l . . . 4 = (le‘𝐾)
2 3at.j . . . 4 = (join‘𝐾)
3 3at.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33atlem7 39483 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
543expia 1121 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
6 hllat 39356 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 simpl 482 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
8 simpr1 1195 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
9 eqid 2729 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
109, 3atbase 39282 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
118, 10syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
12 simpr2 1196 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
139, 3atbase 39282 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
159, 2latjcl 18398 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
167, 11, 14, 15syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
17 simpr3 1197 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
189, 3atbase 39282 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
209, 2latjcl 18398 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
217, 16, 19, 20syl3anc 1373 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
229, 1latref 18400 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
2321, 22syldan 591 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
24 breq2 5111 . . . . . 6 (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2523, 24syl5ibcom 245 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
266, 25sylan 580 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
27263adant3 1132 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2827adantr 480 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
295, 28impbid 212 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Latclat 18390  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  llncvrlpln2  39551  2lplnja  39613
  Copyright terms: Public domain W3C validator