Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3at Structured version   Visualization version   GIF version

Theorem 3at 37498
Description: Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 37485 for lines and 4at 37621 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3at (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))

Proof of Theorem 3at
StepHypRef Expression
1 3at.l . . . 4 = (le‘𝐾)
2 3at.j . . . 4 = (join‘𝐾)
3 3at.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33atlem7 37497 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
543expia 1120 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
6 hllat 37371 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 simpl 483 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
8 simpr1 1193 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
9 eqid 2740 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
109, 3atbase 37297 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
118, 10syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
12 simpr2 1194 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
139, 3atbase 37297 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
159, 2latjcl 18153 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
167, 11, 14, 15syl3anc 1370 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
17 simpr3 1195 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
189, 3atbase 37297 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
209, 2latjcl 18153 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
217, 16, 19, 20syl3anc 1370 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
229, 1latref 18155 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
2321, 22syldan 591 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
24 breq2 5083 . . . . . 6 (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2523, 24syl5ibcom 244 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
266, 25sylan 580 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
27263adant3 1131 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2827adantr 481 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
295, 28impbid 211 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6431  (class class class)co 7269  Basecbs 16908  lecple 16965  joincjn 18025  Latclat 18145  Atomscatm 37271  HLchlt 37358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-proset 18009  df-poset 18027  df-plt 18044  df-lub 18060  df-glb 18061  df-join 18062  df-meet 18063  df-p0 18139  df-lat 18146  df-covers 37274  df-ats 37275  df-atl 37306  df-cvlat 37330  df-hlat 37359
This theorem is referenced by:  llncvrlpln2  37565  2lplnja  37627
  Copyright terms: Public domain W3C validator