Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3at Structured version   Visualization version   GIF version

Theorem 3at 39662
Description: Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 39649 for lines and 4at 39785 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l = (le‘𝐾)
3at.j = (join‘𝐾)
3at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3at (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))

Proof of Theorem 3at
StepHypRef Expression
1 3at.l . . . 4 = (le‘𝐾)
2 3at.j . . . 4 = (join‘𝐾)
3 3at.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33atlem7 39661 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄) ∧ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈))
543expia 1121 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
6 hllat 39535 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
7 simpl 482 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
8 simpr1 1195 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
9 eqid 2733 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
109, 3atbase 39461 . . . . . . . . . 10 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
118, 10syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
12 simpr2 1196 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
139, 3atbase 39461 . . . . . . . . . 10 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
159, 2latjcl 18353 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
167, 11, 14, 15syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
17 simpr3 1197 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
189, 3atbase 39461 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1917, 18syl 17 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
209, 2latjcl 18353 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
217, 16, 19, 20syl3anc 1373 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
229, 1latref 18355 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
2321, 22syldan 591 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅))
24 breq2 5099 . . . . . 6 (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → (((𝑃 𝑄) 𝑅) ((𝑃 𝑄) 𝑅) ↔ ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2523, 24syl5ibcom 245 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
266, 25sylan 580 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
27263adant3 1132 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
2827adantr 480 . 2 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈) → ((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈)))
295, 28impbid 212 1 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ 𝑃𝑄)) → (((𝑃 𝑄) 𝑅) ((𝑆 𝑇) 𝑈) ↔ ((𝑃 𝑄) 𝑅) = ((𝑆 𝑇) 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  Latclat 18345  Atomscatm 39435  HLchlt 39522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-lat 18346  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523
This theorem is referenced by:  llncvrlpln2  39729  2lplnja  39791
  Copyright terms: Public domain W3C validator