Proof of Theorem 4at
Step | Hyp | Ref
| Expression |
1 | | 4at.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
2 | | 4at.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
3 | | 4at.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
4 | 1, 2, 3 | 4atlem12 37553 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
5 | | simp11 1201 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → 𝐾 ∈ HL) |
6 | 5 | hllatd 37305 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → 𝐾 ∈ Lat) |
7 | | simp23 1206 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → 𝑇 ∈ 𝐴) |
8 | | simp31 1207 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → 𝑈 ∈ 𝐴) |
9 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐾) =
(Base‘𝐾) |
10 | 9, 2, 3 | hlatjcl 37308 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
11 | 5, 7, 8, 10 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
12 | | simp32 1208 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → 𝑉 ∈ 𝐴) |
13 | | simp33 1209 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → 𝑊 ∈ 𝐴) |
14 | 9, 2, 3 | hlatjcl 37308 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
15 | 5, 12, 13, 14 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
16 | 9, 2 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
17 | 6, 11, 15, 16 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
18 | 9, 1 | latref 18074 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
19 | 6, 17, 18 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊))) |
20 | | breq1 5073 |
. . . 4
⊢ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) → (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
21 | 19, 20 | syl5ibrcom 246 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
22 | 21 | adantr 480 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |
23 | 4, 22 | impbid 211 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ 𝑈) ∨ (𝑉 ∨ 𝑊)))) |