Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4at Structured version   Visualization version   GIF version

Theorem 4at 39260
Description: Four atoms determine a lattice volume uniquely. Three-dimensional analogue of ps-1 39124 and 3at 39137. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4at ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊))))

Proof of Theorem 4at
StepHypRef Expression
1 4at.l . . 3 = (le‘𝐾)
2 4at.j . . 3 = (join‘𝐾)
3 4at.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 34atlem12 39259 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊))))
5 simp11 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → 𝐾 ∈ HL)
65hllatd 39010 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → 𝐾 ∈ Lat)
7 simp23 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → 𝑇𝐴)
8 simp31 1206 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → 𝑈𝐴)
9 eqid 2725 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
109, 2, 3hlatjcl 39013 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
115, 7, 8, 10syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
12 simp32 1207 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → 𝑉𝐴)
13 simp33 1208 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → 𝑊𝐴)
149, 2, 3hlatjcl 39013 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
155, 12, 13, 14syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → (𝑉 𝑊) ∈ (Base‘𝐾))
169, 2latjcl 18459 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑇 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
176, 11, 15, 16syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → ((𝑇 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾))
189, 1latref 18461 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑇 𝑈) (𝑉 𝑊)) ∈ (Base‘𝐾)) → ((𝑇 𝑈) (𝑉 𝑊)) ((𝑇 𝑈) (𝑉 𝑊)))
196, 17, 18syl2anc 582 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → ((𝑇 𝑈) (𝑉 𝑊)) ((𝑇 𝑈) (𝑉 𝑊)))
20 breq1 5155 . . . 4 (((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊)) → (((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑇 𝑈) (𝑉 𝑊)) ((𝑇 𝑈) (𝑉 𝑊))))
2119, 20syl5ibrcom 246 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) → (((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊))))
2221adantr 479 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊))))
234, 22impbid 211 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴𝑊𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) (𝑉 𝑊)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑇 𝑈) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5152  cfv 6553  (class class class)co 7423  Basecbs 17208  lecple 17268  joincjn 18331  Latclat 18451  Atomscatm 38909  HLchlt 38996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-lat 18452  df-clat 18519  df-oposet 38822  df-ol 38824  df-oml 38825  df-covers 38912  df-ats 38913  df-atl 38944  df-cvlat 38968  df-hlat 38997  df-llines 39145  df-lplanes 39146  df-lvols 39147
This theorem is referenced by:  4at2  39261
  Copyright terms: Public domain W3C validator