Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4at Structured version   Visualization version   GIF version

Theorem 4at 38105
Description: Four atoms determine a lattice volume uniquely. Three-dimensional analogue of ps-1 37969 and 3at 37982. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
4at.l ≀ = (leβ€˜πΎ)
4at.j ∨ = (joinβ€˜πΎ)
4at.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
4at ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))

Proof of Theorem 4at
StepHypRef Expression
1 4at.l . . 3 ≀ = (leβ€˜πΎ)
2 4at.j . . 3 ∨ = (joinβ€˜πΎ)
3 4at.a . . 3 𝐴 = (Atomsβ€˜πΎ)
41, 2, 34atlem12 38104 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
5 simp11 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ 𝐾 ∈ HL)
65hllatd 37855 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
7 simp23 1209 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ 𝑇 ∈ 𝐴)
8 simp31 1210 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ π‘ˆ ∈ 𝐴)
9 eqid 2737 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
109, 2, 3hlatjcl 37858 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
115, 7, 8, 10syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
12 simp32 1211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ 𝑉 ∈ 𝐴)
13 simp33 1212 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ π‘Š ∈ 𝐴)
149, 2, 3hlatjcl 37858 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴) β†’ (𝑉 ∨ π‘Š) ∈ (Baseβ€˜πΎ))
155, 12, 13, 14syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ (𝑉 ∨ π‘Š) ∈ (Baseβ€˜πΎ))
169, 2latjcl 18335 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ) ∧ (𝑉 ∨ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ))
176, 11, 15, 16syl3anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ))
189, 1latref 18337 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
196, 17, 18syl2anc 585 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)))
20 breq1 5113 . . . 4 (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
2119, 20syl5ibrcom 247 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
2221adantr 482 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) β†’ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
234, 22impbid 211 1 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ π‘Š ∈ 𝐴)) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑆 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))) β†’ (((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≀ ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑇 ∨ π‘ˆ) ∨ (𝑉 ∨ π‘Š))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  Latclat 18327  Atomscatm 37754  HLchlt 37841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-clat 18395  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-llines 37990  df-lplanes 37991  df-lvols 37992
This theorem is referenced by:  4at2  38106
  Copyright terms: Public domain W3C validator