MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslinds Structured version   Visualization version   GIF version

Theorem lbslinds 21870
Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
lbslinds.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslinds 𝐽 ⊆ (LIndS‘𝑊)

Proof of Theorem lbslinds
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lbslinds.j . . . 4 𝐽 = (LBasis‘𝑊)
3 eqid 2734 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs4 21869 . . 3 (𝑎𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊)))
54simplbi 497 . 2 (𝑎𝐽𝑎 ∈ (LIndS‘𝑊))
65ssriv 3998 1 𝐽 ⊆ (LIndS‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2105  wss 3962  cfv 6562  Basecbs 17244  LSpanclspn 20986  LBasisclbs 21090  LIndSclinds 21842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-lbs 21091  df-lindf 21843  df-linds 21844
This theorem is referenced by:  islinds4  21872  lmimlbs  21873  lbslcic  21878  lvecdim0  33633  lssdimle  33634  lbsdiflsp0  33653  dimkerim  33654  fedgmullem2  33657  fedgmul  33658  extdg1id  33690
  Copyright terms: Public domain W3C validator