MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslinds Structured version   Visualization version   GIF version

Theorem lbslinds 21807
Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
lbslinds.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslinds 𝐽 ⊆ (LIndS‘𝑊)

Proof of Theorem lbslinds
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lbslinds.j . . . 4 𝐽 = (LBasis‘𝑊)
3 eqid 2734 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs4 21806 . . 3 (𝑎𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊)))
54simplbi 497 . 2 (𝑎𝐽𝑎 ∈ (LIndS‘𝑊))
65ssriv 3967 1 𝐽 ⊆ (LIndS‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  wss 3931  cfv 6541  Basecbs 17229  LSpanclspn 20937  LBasisclbs 21041  LIndSclinds 21779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-lbs 21042  df-lindf 21780  df-linds 21781
This theorem is referenced by:  islinds4  21809  lmimlbs  21810  lbslcic  21815  lvecdim0  33592  lssdimle  33593  lbsdiflsp0  33612  dimkerim  33613  fedgmullem2  33616  fedgmul  33617  extdg1id  33653
  Copyright terms: Public domain W3C validator