| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbslinds | Structured version Visualization version GIF version | ||
| Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lbslinds.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbslinds | ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lbslinds.j | . . . 4 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs4 21757 | . . 3 ⊢ (𝑎 ∈ 𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊))) |
| 5 | 4 | simplbi 497 | . 2 ⊢ (𝑎 ∈ 𝐽 → 𝑎 ∈ (LIndS‘𝑊)) |
| 6 | 5 | ssriv 3941 | 1 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 Basecbs 17138 LSpanclspn 20892 LBasisclbs 20996 LIndSclinds 21730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-lbs 20997 df-lindf 21731 df-linds 21732 |
| This theorem is referenced by: islinds4 21760 lmimlbs 21761 lbslcic 21766 lvecdim0 33581 lssdimle 33582 lbsdiflsp0 33601 dimkerim 33602 fedgmullem2 33605 fedgmul 33606 extdg1id 33640 |
| Copyright terms: Public domain | W3C validator |