MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslinds Structured version   Visualization version   GIF version

Theorem lbslinds 21742
Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
lbslinds.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslinds 𝐽 ⊆ (LIndS‘𝑊)

Proof of Theorem lbslinds
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lbslinds.j . . . 4 𝐽 = (LBasis‘𝑊)
3 eqid 2729 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs4 21741 . . 3 (𝑎𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊)))
54simplbi 497 . 2 (𝑎𝐽𝑎 ∈ (LIndS‘𝑊))
65ssriv 3950 1 𝐽 ⊆ (LIndS‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wss 3914  cfv 6511  Basecbs 17179  LSpanclspn 20877  LBasisclbs 20981  LIndSclinds 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-lbs 20982  df-lindf 21715  df-linds 21716
This theorem is referenced by:  islinds4  21744  lmimlbs  21745  lbslcic  21750  lvecdim0  33602  lssdimle  33603  lbsdiflsp0  33622  dimkerim  33623  fedgmullem2  33626  fedgmul  33627  extdg1id  33661
  Copyright terms: Public domain W3C validator