| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbslinds | Structured version Visualization version GIF version | ||
| Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lbslinds.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbslinds | ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lbslinds.j | . . . 4 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs4 21741 | . . 3 ⊢ (𝑎 ∈ 𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊))) |
| 5 | 4 | simplbi 497 | . 2 ⊢ (𝑎 ∈ 𝐽 → 𝑎 ∈ (LIndS‘𝑊)) |
| 6 | 5 | ssriv 3950 | 1 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 Basecbs 17179 LSpanclspn 20877 LBasisclbs 20981 LIndSclinds 21714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-lbs 20982 df-lindf 21715 df-linds 21716 |
| This theorem is referenced by: islinds4 21744 lmimlbs 21745 lbslcic 21750 lvecdim0 33602 lssdimle 33603 lbsdiflsp0 33622 dimkerim 33623 fedgmullem2 33626 fedgmul 33627 extdg1id 33661 |
| Copyright terms: Public domain | W3C validator |