| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbslinds | Structured version Visualization version GIF version | ||
| Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lbslinds.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbslinds | ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lbslinds.j | . . . 4 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs4 21764 | . . 3 ⊢ (𝑎 ∈ 𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊))) |
| 5 | 4 | simplbi 497 | . 2 ⊢ (𝑎 ∈ 𝐽 → 𝑎 ∈ (LIndS‘𝑊)) |
| 6 | 5 | ssriv 3933 | 1 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 Basecbs 17115 LSpanclspn 20899 LBasisclbs 21003 LIndSclinds 21737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-lbs 21004 df-lindf 21738 df-linds 21739 |
| This theorem is referenced by: islinds4 21767 lmimlbs 21768 lbslcic 21773 lvecdim0 33611 lssdimle 33612 lbsdiflsp0 33631 dimkerim 33632 fedgmullem2 33635 fedgmul 33636 extdg1id 33671 |
| Copyright terms: Public domain | W3C validator |