MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbslinds Structured version   Visualization version   GIF version

Theorem lbslinds 21779
Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
lbslinds.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbslinds 𝐽 ⊆ (LIndS‘𝑊)

Proof of Theorem lbslinds
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lbslinds.j . . . 4 𝐽 = (LBasis‘𝑊)
3 eqid 2733 . . . 4 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs4 21778 . . 3 (𝑎𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊)))
54simplbi 497 . 2 (𝑎𝐽𝑎 ∈ (LIndS‘𝑊))
65ssriv 3934 1 𝐽 ⊆ (LIndS‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  wss 3898  cfv 6489  Basecbs 17127  LSpanclspn 20913  LBasisclbs 21017  LIndSclinds 21751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-lbs 21018  df-lindf 21752  df-linds 21753
This theorem is referenced by:  islinds4  21781  lmimlbs  21782  lbslcic  21787  lvecdim0  33691  lssdimle  33692  lbsdiflsp0  33711  dimkerim  33712  fedgmullem2  33715  fedgmul  33716  extdg1id  33751
  Copyright terms: Public domain W3C validator