![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbslinds | Structured version Visualization version GIF version |
Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lbslinds.j | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
lbslinds | ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lbslinds.j | . . . 4 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | eqid 2734 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | 1, 2, 3 | islbs4 21869 | . . 3 ⊢ (𝑎 ∈ 𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊))) |
5 | 4 | simplbi 497 | . 2 ⊢ (𝑎 ∈ 𝐽 → 𝑎 ∈ (LIndS‘𝑊)) |
6 | 5 | ssriv 3998 | 1 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ‘cfv 6562 Basecbs 17244 LSpanclspn 20986 LBasisclbs 21090 LIndSclinds 21842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-lbs 21091 df-lindf 21843 df-linds 21844 |
This theorem is referenced by: islinds4 21872 lmimlbs 21873 lbslcic 21878 lvecdim0 33633 lssdimle 33634 lbsdiflsp0 33653 dimkerim 33654 fedgmullem2 33657 fedgmul 33658 extdg1id 33690 |
Copyright terms: Public domain | W3C validator |