| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbslinds | Structured version Visualization version GIF version | ||
| Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lbslinds.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbslinds | ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lbslinds.j | . . . 4 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 4 | 1, 2, 3 | islbs4 21778 | . . 3 ⊢ (𝑎 ∈ 𝐽 ↔ (𝑎 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑊)‘𝑎) = (Base‘𝑊))) |
| 5 | 4 | simplbi 497 | . 2 ⊢ (𝑎 ∈ 𝐽 → 𝑎 ∈ (LIndS‘𝑊)) |
| 6 | 5 | ssriv 3934 | 1 ⊢ 𝐽 ⊆ (LIndS‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6489 Basecbs 17127 LSpanclspn 20913 LBasisclbs 21017 LIndSclinds 21751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-lbs 21018 df-lindf 21752 df-linds 21753 |
| This theorem is referenced by: islinds4 21781 lmimlbs 21782 lbslcic 21787 lvecdim0 33691 lssdimle 33692 lbsdiflsp0 33711 dimkerim 33712 fedgmullem2 33715 fedgmul 33716 extdg1id 33751 |
| Copyright terms: Public domain | W3C validator |