| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemaxle | Structured version Visualization version GIF version | ||
| Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.) |
| Ref | Expression |
|---|---|
| lemaxle | ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | max2 13090 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) | |
| 2 | 1 | ancoms 458 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
| 3 | 2 | adantr 480 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
| 4 | simpr 484 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 5 | simpll 766 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 6 | ifcl 4522 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) |
| 8 | letr 11216 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) | |
| 9 | 4, 5, 7, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) |
| 10 | 3, 9 | mpan2d 694 | . 2 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) |
| 11 | 10 | 3impia 1117 | 1 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ifcif 4476 class class class wbr 5095 ℝcr 11014 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |