MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemaxle Structured version   Visualization version   GIF version

Theorem lemaxle 12321
Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.)
Assertion
Ref Expression
lemaxle (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶))

Proof of Theorem lemaxle
StepHypRef Expression
1 max2 12313 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶))
21ancoms 452 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶))
32adantr 474 . . 3 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶))
4 simpr 479 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
5 simpll 783 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
6 ifcl 4352 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → if(𝐶𝐵, 𝐵, 𝐶) ∈ ℝ)
76adantr 474 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → if(𝐶𝐵, 𝐵, 𝐶) ∈ ℝ)
8 letr 10457 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐶𝐵, 𝐵, 𝐶) ∈ ℝ) → ((𝐴𝐵𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶)))
94, 5, 7, 8syl3anc 1494 . . 3 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴𝐵𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶)))
103, 9mpan2d 685 . 2 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶)))
11103impia 1149 1 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111  wcel 2164  ifcif 4308   class class class wbr 4875  cr 10258  cle 10399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-pre-lttri 10333  ax-pre-lttrn 10334
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator