MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemaxle Structured version   Visualization version   GIF version

Theorem lemaxle 13180
Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.)
Assertion
Ref Expression
lemaxle (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶))

Proof of Theorem lemaxle
StepHypRef Expression
1 max2 13172 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶))
21ancoms 458 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶))
32adantr 480 . . 3 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶))
4 simpr 484 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
5 simpll 764 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
6 ifcl 4568 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → if(𝐶𝐵, 𝐵, 𝐶) ∈ ℝ)
76adantr 480 . . . 4 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → if(𝐶𝐵, 𝐵, 𝐶) ∈ ℝ)
8 letr 11312 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐶𝐵, 𝐵, 𝐶) ∈ ℝ) → ((𝐴𝐵𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶)))
94, 5, 7, 8syl3anc 1368 . . 3 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴𝐵𝐵 ≤ if(𝐶𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶)))
103, 9mpan2d 691 . 2 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴𝐵𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶)))
11103impia 1114 1 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ if(𝐶𝐵, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098  ifcif 4523   class class class wbr 5141  cr 11111  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator