![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lemaxle | Structured version Visualization version GIF version |
Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021.) |
Ref | Expression |
---|---|
lemaxle | ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | max2 12313 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) | |
2 | 1 | ancoms 452 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
3 | 2 | adantr 474 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
4 | simpr 479 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
5 | simpll 783 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ) | |
6 | ifcl 4352 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) | |
7 | 6 | adantr 474 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) |
8 | letr 10457 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(𝐶 ≤ 𝐵, 𝐵, 𝐶) ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) | |
9 | 4, 5, 7, 8 | syl3anc 1494 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) |
10 | 3, 9 | mpan2d 685 | . 2 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 𝐵 → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶))) |
11 | 10 | 3impia 1149 | 1 ⊢ (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if(𝐶 ≤ 𝐵, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1111 ∈ wcel 2164 ifcif 4308 class class class wbr 4875 ℝcr 10258 ≤ cle 10399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-pre-lttri 10333 ax-pre-lttrn 10334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |