| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11326 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 3 | 2 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 4 | lelttr 11330 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | ltle 11328 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
| 6 | 5 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 9 | breq2 5128 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
| 10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
| 13 | 3, 12 | sylbid 240 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 < clt 11274 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 |
| This theorem is referenced by: letri 11369 letrd 11397 le2add 11724 le2sub 11741 p1le 12091 lemul12b 12103 lemul12a 12104 zletr 12641 peano2uz2 12686 ledivge1le 13085 lemaxle 13216 elfz1b 13615 elfz0fzfz0 13655 fz0fzelfz0 13656 fz0fzdiffz0 13659 elfzmlbp 13661 difelfznle 13664 elincfzoext 13744 ssfzoulel 13781 ssfzo12bi 13782 flge 13827 flflp1 13829 fldiv4p1lem1div2 13857 fldiv4lem1div2uz2 13858 monoord 14055 le2sq2 14158 leexp2r 14197 expubnd 14201 facwordi 14312 faclbnd3 14315 facavg 14324 fi1uzind 14530 swrdswrdlem 14727 swrdccat 14758 01sqrexlem1 15266 01sqrexlem6 15271 01sqrexlem7 15272 leabs 15323 limsupbnd2 15504 rlim3 15519 lo1bdd2 15545 lo1bddrp 15546 o1lo1 15558 lo1mul 15649 lo1le 15673 isercolllem2 15687 iseraltlem2 15704 fsumabs 15822 cvgrat 15904 ruclem9 16261 algcvga 16603 prmdvdsfz 16729 prmfac1 16744 eulerthlem2 16806 modprm0 16830 prmreclem1 16941 prmreclem4 16944 4sqlem11 16980 vdwnnlem3 17022 zntoslem 21522 gsumbagdiaglem 21895 psdmul 22109 cnllycmp 24911 evth 24914 ovoliunlem2 25461 ovolicc2lem3 25477 itg2monolem1 25708 bddiblnc 25800 coeaddlem 26211 coemullem 26212 aalioulem5 26301 aalioulem6 26302 sincosq1lem 26463 emcllem6 26968 ftalem3 27042 fsumvma2 27182 chpchtsum 27187 bcmono 27245 bposlem5 27256 gausslemma2dlem1a 27333 lgsquadlem1 27348 dchrisum0lem1 27484 pntrsumbnd2 27535 pntleml 27579 brbtwn2 28889 axlowdimlem17 28942 axlowdim 28945 crctcshwlkn0lem3 29799 crctcshwlkn0lem5 29801 wwlksubclwwlk 30044 eupth2lems 30224 nmoub3i 30759 ubthlem1 30856 ubthlem2 30857 nmopub2tALT 31895 nmfnleub2 31912 lnconi 32019 leoptr 32123 pjnmopi 32134 cdj3lem2b 32423 eulerpartlemb 34405 isbasisrelowllem1 37378 isbasisrelowllem2 37379 ltflcei 37637 itg2addnclem2 37701 itg2addnclem3 37702 itg2addnc 37703 dvasin 37733 incsequz 37777 mettrifi 37786 equivbnd 37819 bfplem1 37851 jm2.17b 42960 fmul01lt1lem2 45594 eluzge0nn0 47321 elfz2z 47324 iccpartiltu 47416 iccpartgt 47421 lighneallem2 47600 |
| Copyright terms: Public domain | W3C validator |