| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11260 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 3 | 2 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 4 | lelttr 11264 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | ltle 11262 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
| 6 | 5 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 9 | breq2 5111 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
| 10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
| 13 | 3, 12 | sylbid 240 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: letri 11303 letrd 11331 le2add 11660 le2sub 11677 p1le 12027 lemul12b 12039 lemul12a 12040 zletr 12577 peano2uz2 12622 ledivge1le 13024 lemaxle 13155 elfz1b 13554 elfz0fzfz0 13594 fz0fzelfz0 13595 fz0fzdiffz0 13598 elfzmlbp 13600 difelfznle 13603 elincfzoext 13684 ssfzoulel 13721 ssfzo12bi 13722 flge 13767 flflp1 13769 fldiv4p1lem1div2 13797 fldiv4lem1div2uz2 13798 monoord 13997 le2sq2 14100 leexp2r 14139 expubnd 14143 facwordi 14254 faclbnd3 14257 facavg 14266 fi1uzind 14472 swrdswrdlem 14669 swrdccat 14700 01sqrexlem1 15208 01sqrexlem6 15213 01sqrexlem7 15214 leabs 15265 limsupbnd2 15449 rlim3 15464 lo1bdd2 15490 lo1bddrp 15491 o1lo1 15503 lo1mul 15594 lo1le 15618 isercolllem2 15632 iseraltlem2 15649 fsumabs 15767 cvgrat 15849 ruclem9 16206 algcvga 16549 prmdvdsfz 16675 prmfac1 16690 eulerthlem2 16752 modprm0 16776 prmreclem1 16887 prmreclem4 16890 4sqlem11 16926 vdwnnlem3 16968 zntoslem 21466 gsumbagdiaglem 21839 psdmul 22053 cnllycmp 24855 evth 24858 ovoliunlem2 25404 ovolicc2lem3 25420 itg2monolem1 25651 bddiblnc 25743 coeaddlem 26154 coemullem 26155 aalioulem5 26244 aalioulem6 26245 sincosq1lem 26406 emcllem6 26911 ftalem3 26985 fsumvma2 27125 chpchtsum 27130 bcmono 27188 bposlem5 27199 gausslemma2dlem1a 27276 lgsquadlem1 27291 dchrisum0lem1 27427 pntrsumbnd2 27478 pntleml 27522 brbtwn2 28832 axlowdimlem17 28885 axlowdim 28888 crctcshwlkn0lem3 29742 crctcshwlkn0lem5 29744 wwlksubclwwlk 29987 eupth2lems 30167 nmoub3i 30702 ubthlem1 30799 ubthlem2 30800 nmopub2tALT 31838 nmfnleub2 31855 lnconi 31962 leoptr 32066 pjnmopi 32077 cdj3lem2b 32366 eulerpartlemb 34359 isbasisrelowllem1 37343 isbasisrelowllem2 37344 ltflcei 37602 itg2addnclem2 37666 itg2addnclem3 37667 itg2addnc 37668 dvasin 37698 incsequz 37742 mettrifi 37751 equivbnd 37784 bfplem1 37816 jm2.17b 42950 fmul01lt1lem2 45583 eluzge0nn0 47313 elfz2z 47316 iccpartiltu 47423 iccpartgt 47428 lighneallem2 47607 |
| Copyright terms: Public domain | W3C validator |