| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11236 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 3 | 2 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 4 | lelttr 11240 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | ltle 11238 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
| 6 | 5 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 9 | breq2 5106 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
| 10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
| 13 | 3, 12 | sylbid 240 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: letri 11279 letrd 11307 le2add 11636 le2sub 11653 p1le 12003 lemul12b 12015 lemul12a 12016 zletr 12553 peano2uz2 12598 ledivge1le 13000 lemaxle 13131 elfz1b 13530 elfz0fzfz0 13570 fz0fzelfz0 13571 fz0fzdiffz0 13574 elfzmlbp 13576 difelfznle 13579 elincfzoext 13660 ssfzoulel 13697 ssfzo12bi 13698 flge 13743 flflp1 13745 fldiv4p1lem1div2 13773 fldiv4lem1div2uz2 13774 monoord 13973 le2sq2 14076 leexp2r 14115 expubnd 14119 facwordi 14230 faclbnd3 14233 facavg 14242 fi1uzind 14448 swrdswrdlem 14645 swrdccat 14676 01sqrexlem1 15184 01sqrexlem6 15189 01sqrexlem7 15190 leabs 15241 limsupbnd2 15425 rlim3 15440 lo1bdd2 15466 lo1bddrp 15467 o1lo1 15479 lo1mul 15570 lo1le 15594 isercolllem2 15608 iseraltlem2 15625 fsumabs 15743 cvgrat 15825 ruclem9 16182 algcvga 16525 prmdvdsfz 16651 prmfac1 16666 eulerthlem2 16728 modprm0 16752 prmreclem1 16863 prmreclem4 16866 4sqlem11 16902 vdwnnlem3 16944 zntoslem 21442 gsumbagdiaglem 21815 psdmul 22029 cnllycmp 24831 evth 24834 ovoliunlem2 25380 ovolicc2lem3 25396 itg2monolem1 25627 bddiblnc 25719 coeaddlem 26130 coemullem 26131 aalioulem5 26220 aalioulem6 26221 sincosq1lem 26382 emcllem6 26887 ftalem3 26961 fsumvma2 27101 chpchtsum 27106 bcmono 27164 bposlem5 27175 gausslemma2dlem1a 27252 lgsquadlem1 27267 dchrisum0lem1 27403 pntrsumbnd2 27454 pntleml 27498 brbtwn2 28808 axlowdimlem17 28861 axlowdim 28864 crctcshwlkn0lem3 29715 crctcshwlkn0lem5 29717 wwlksubclwwlk 29960 eupth2lems 30140 nmoub3i 30675 ubthlem1 30772 ubthlem2 30773 nmopub2tALT 31811 nmfnleub2 31828 lnconi 31935 leoptr 32039 pjnmopi 32050 cdj3lem2b 32339 eulerpartlemb 34332 isbasisrelowllem1 37316 isbasisrelowllem2 37317 ltflcei 37575 itg2addnclem2 37639 itg2addnclem3 37640 itg2addnc 37641 dvasin 37671 incsequz 37715 mettrifi 37724 equivbnd 37757 bfplem1 37789 jm2.17b 42923 fmul01lt1lem2 45556 eluzge0nn0 47286 elfz2z 47289 iccpartiltu 47396 iccpartgt 47401 lighneallem2 47580 |
| Copyright terms: Public domain | W3C validator |