![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 10563 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3adant1 1121 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
3 | 2 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
4 | lelttr 10567 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | ltle 10565 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
6 | 5 | 3adant2 1122 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 7 | expdimp 453 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
9 | breq2 4960 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
10 | 9 | biimpcd 250 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
11 | 10 | adantl 482 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
12 | 8, 11 | jaod 854 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
13 | 3, 12 | sylbid 241 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
14 | 13 | expimpd 454 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 class class class wbr 4956 ℝcr 10371 < clt 10510 ≤ cle 10511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-resscn 10429 ax-pre-lttri 10446 ax-pre-lttrn 10447 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 |
This theorem is referenced by: letri 10605 letrd 10633 le2add 10959 le2sub 10976 p1le 11322 lemul12b 11334 lemul12a 11335 zletr 11864 peano2uz2 11908 ledivge1le 12299 lemaxle 12427 elfz1b 12815 elfz0fzfz0 12851 fz0fzelfz0 12852 fz0fzdiffz0 12855 elfzmlbp 12857 difelfznle 12860 elincfzoext 12933 ssfzoulel 12969 ssfzo12bi 12970 flge 13013 flflp1 13015 fldiv4p1lem1div2 13043 fldiv4lem1div2uz2 13044 monoord 13238 le2sq2 13338 leexp2r 13376 expubnd 13379 facwordi 13487 faclbnd3 13490 facavg 13499 fi1uzind 13689 swrdswrdlem 13890 swrdccat 13921 sqrlem1 14424 sqrlem6 14429 sqrlem7 14430 leabs 14481 limsupbnd2 14662 rlim3 14677 lo1bdd2 14703 lo1bddrp 14704 o1lo1 14716 lo1mul 14806 lo1le 14830 isercolllem2 14844 iseraltlem2 14861 fsumabs 14977 cvgrat 15060 ruclem9 15412 algcvga 15740 prmdvdsfz 15866 prmfac1 15880 eulerthlem2 15936 modprm0 15959 prmreclem1 16069 prmreclem4 16072 4sqlem11 16108 vdwnnlem3 16150 gsumbagdiaglem 19831 zntoslem 20373 cnllycmp 23231 evth 23234 ovoliunlem2 23775 ovolicc2lem3 23791 itg2monolem1 24022 coeaddlem 24510 coemullem 24511 aalioulem5 24596 aalioulem6 24597 sincosq1lem 24754 emcllem6 25248 ftalem3 25322 fsumvma2 25460 chpchtsum 25465 bcmono 25523 bposlem5 25534 gausslemma2dlem1a 25611 lgsquadlem1 25626 dchrisum0lem1 25762 pntrsumbnd2 25813 pntleml 25857 brbtwn2 26362 axlowdimlem17 26415 axlowdim 26418 crctcshwlkn0lem3 27265 crctcshwlkn0lem5 27267 wwlksubclwwlk 27512 eupth2lems 27693 nmoub3i 28229 ubthlem1 28326 ubthlem2 28327 nmopub2tALT 29365 nmfnleub2 29382 lnconi 29489 leoptr 29593 pjnmopi 29604 cdj3lem2b 29893 eulerpartlemb 31199 isbasisrelowllem1 34113 isbasisrelowllem2 34114 ltflcei 34357 itg2addnclem2 34421 itg2addnclem3 34422 itg2addnc 34423 bddiblnc 34439 dvasin 34455 incsequz 34501 mettrifi 34510 equivbnd 34546 bfplem1 34578 jm2.17b 38994 fmul01lt1lem2 41362 eluzge0nn0 42982 elfz2z 42985 iccpartiltu 43018 iccpartgt 43023 lighneallem2 43207 |
Copyright terms: Public domain | W3C validator |