| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11208 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 3 | 2 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 4 | lelttr 11212 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | ltle 11210 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
| 6 | 5 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 9 | breq2 5099 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
| 10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
| 13 | 3, 12 | sylbid 240 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 < clt 11155 ≤ cle 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 |
| This theorem is referenced by: letri 11251 letrd 11279 le2add 11608 le2sub 11625 p1le 11975 lemul12b 11987 lemul12a 11988 zletr 12524 peano2uz2 12569 ledivge1le 12967 lemaxle 13098 elfz1b 13497 elfz0fzfz0 13537 fz0fzelfz0 13538 fz0fzdiffz0 13541 elfzmlbp 13543 difelfznle 13546 elincfzoext 13627 ssfzoulel 13664 ssfzo12bi 13665 flge 13713 flflp1 13715 fldiv4p1lem1div2 13743 fldiv4lem1div2uz2 13744 monoord 13943 le2sq2 14046 leexp2r 14085 expubnd 14089 facwordi 14200 faclbnd3 14203 facavg 14212 fi1uzind 14418 swrdswrdlem 14615 swrdccat 14646 01sqrexlem1 15153 01sqrexlem6 15158 01sqrexlem7 15159 leabs 15210 limsupbnd2 15394 rlim3 15409 lo1bdd2 15435 lo1bddrp 15436 o1lo1 15448 lo1mul 15539 lo1le 15563 isercolllem2 15577 iseraltlem2 15594 fsumabs 15712 cvgrat 15794 ruclem9 16151 algcvga 16494 prmdvdsfz 16620 prmfac1 16635 eulerthlem2 16697 modprm0 16721 prmreclem1 16832 prmreclem4 16835 4sqlem11 16871 vdwnnlem3 16913 zntoslem 21497 gsumbagdiaglem 21871 psdmul 22084 cnllycmp 24885 evth 24888 ovoliunlem2 25434 ovolicc2lem3 25450 itg2monolem1 25681 bddiblnc 25773 coeaddlem 26184 coemullem 26185 aalioulem5 26274 aalioulem6 26275 sincosq1lem 26436 emcllem6 26941 ftalem3 27015 fsumvma2 27155 chpchtsum 27160 bcmono 27218 bposlem5 27229 gausslemma2dlem1a 27306 lgsquadlem1 27321 dchrisum0lem1 27457 pntrsumbnd2 27508 pntleml 27552 brbtwn2 28887 axlowdimlem17 28940 axlowdim 28943 crctcshwlkn0lem3 29794 crctcshwlkn0lem5 29796 wwlksubclwwlk 30042 eupth2lems 30222 nmoub3i 30757 ubthlem1 30854 ubthlem2 30855 nmopub2tALT 31893 nmfnleub2 31910 lnconi 32017 leoptr 32121 pjnmopi 32132 cdj3lem2b 32421 eulerpartlemb 34404 isbasisrelowllem1 37422 isbasisrelowllem2 37423 ltflcei 37671 itg2addnclem2 37735 itg2addnclem3 37736 itg2addnc 37737 dvasin 37767 incsequz 37811 mettrifi 37820 equivbnd 37853 bfplem1 37885 jm2.17b 43081 fmul01lt1lem2 45712 eluzge0nn0 47439 elfz2z 47442 iccpartiltu 47549 iccpartgt 47554 lighneallem2 47733 |
| Copyright terms: Public domain | W3C validator |