Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 11070 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
3 | 2 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
4 | lelttr 11074 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | ltle 11072 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
6 | 5 | 3adant2 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 7 | expdimp 453 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
9 | breq2 5079 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
10 | 9 | biimpcd 248 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
11 | 10 | adantl 482 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
12 | 8, 11 | jaod 856 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
13 | 3, 12 | sylbid 239 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
14 | 13 | expimpd 454 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 ℝcr 10879 < clt 11018 ≤ cle 11019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-pre-lttri 10954 ax-pre-lttrn 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 |
This theorem is referenced by: letri 11113 letrd 11141 le2add 11466 le2sub 11483 p1le 11829 lemul12b 11841 lemul12a 11842 zletr 12373 peano2uz2 12417 ledivge1le 12810 lemaxle 12938 elfz1b 13334 elfz0fzfz0 13370 fz0fzelfz0 13371 fz0fzdiffz0 13374 elfzmlbp 13376 difelfznle 13379 elincfzoext 13454 ssfzoulel 13490 ssfzo12bi 13491 flge 13534 flflp1 13536 fldiv4p1lem1div2 13564 fldiv4lem1div2uz2 13565 monoord 13762 le2sq2 13863 leexp2r 13901 expubnd 13904 facwordi 14012 faclbnd3 14015 facavg 14024 fi1uzind 14220 swrdswrdlem 14426 swrdccat 14457 sqrlem1 14963 sqrlem6 14968 sqrlem7 14969 leabs 15020 limsupbnd2 15201 rlim3 15216 lo1bdd2 15242 lo1bddrp 15243 o1lo1 15255 lo1mul 15346 lo1le 15372 isercolllem2 15386 iseraltlem2 15403 fsumabs 15522 cvgrat 15604 ruclem9 15956 algcvga 16293 prmdvdsfz 16419 prmfac1 16435 eulerthlem2 16492 modprm0 16515 prmreclem1 16626 prmreclem4 16629 4sqlem11 16665 vdwnnlem3 16707 zntoslem 20773 gsumbagdiaglemOLD 21150 gsumbagdiaglem 21153 cnllycmp 24128 evth 24131 ovoliunlem2 24676 ovolicc2lem3 24692 itg2monolem1 24924 bddiblnc 25015 coeaddlem 25419 coemullem 25420 aalioulem5 25505 aalioulem6 25506 sincosq1lem 25663 emcllem6 26159 ftalem3 26233 fsumvma2 26371 chpchtsum 26376 bcmono 26434 bposlem5 26445 gausslemma2dlem1a 26522 lgsquadlem1 26537 dchrisum0lem1 26673 pntrsumbnd2 26724 pntleml 26768 brbtwn2 27282 axlowdimlem17 27335 axlowdim 27338 crctcshwlkn0lem3 28186 crctcshwlkn0lem5 28188 wwlksubclwwlk 28431 eupth2lems 28611 nmoub3i 29144 ubthlem1 29241 ubthlem2 29242 nmopub2tALT 30280 nmfnleub2 30297 lnconi 30404 leoptr 30508 pjnmopi 30519 cdj3lem2b 30808 eulerpartlemb 32344 isbasisrelowllem1 35535 isbasisrelowllem2 35536 ltflcei 35774 itg2addnclem2 35838 itg2addnclem3 35839 itg2addnc 35840 dvasin 35870 incsequz 35915 mettrifi 35924 equivbnd 35957 bfplem1 35989 jm2.17b 40790 fmul01lt1lem2 43133 eluzge0nn0 44815 elfz2z 44818 iccpartiltu 44885 iccpartgt 44890 lighneallem2 45069 |
Copyright terms: Public domain | W3C validator |