![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version |
Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
Ref | Expression |
---|---|
letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leloe 11345 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
3 | 2 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
4 | lelttr 11349 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
5 | ltle 11347 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
6 | 5 | 3adant2 1130 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
9 | breq2 5152 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
13 | 3, 12 | sylbid 240 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
14 | 13 | expimpd 453 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: letri 11388 letrd 11416 le2add 11743 le2sub 11760 p1le 12110 lemul12b 12122 lemul12a 12123 zletr 12659 peano2uz2 12704 ledivge1le 13104 lemaxle 13234 elfz1b 13630 elfz0fzfz0 13670 fz0fzelfz0 13671 fz0fzdiffz0 13674 elfzmlbp 13676 difelfznle 13679 elincfzoext 13759 ssfzoulel 13796 ssfzo12bi 13797 flge 13842 flflp1 13844 fldiv4p1lem1div2 13872 fldiv4lem1div2uz2 13873 monoord 14070 le2sq2 14172 leexp2r 14211 expubnd 14214 facwordi 14325 faclbnd3 14328 facavg 14337 fi1uzind 14543 swrdswrdlem 14739 swrdccat 14770 01sqrexlem1 15278 01sqrexlem6 15283 01sqrexlem7 15284 leabs 15335 limsupbnd2 15516 rlim3 15531 lo1bdd2 15557 lo1bddrp 15558 o1lo1 15570 lo1mul 15661 lo1le 15685 isercolllem2 15699 iseraltlem2 15716 fsumabs 15834 cvgrat 15916 ruclem9 16271 algcvga 16613 prmdvdsfz 16739 prmfac1 16754 eulerthlem2 16816 modprm0 16839 prmreclem1 16950 prmreclem4 16953 4sqlem11 16989 vdwnnlem3 17031 zntoslem 21593 gsumbagdiaglem 21968 psdmul 22188 cnllycmp 25002 evth 25005 ovoliunlem2 25552 ovolicc2lem3 25568 itg2monolem1 25800 bddiblnc 25892 coeaddlem 26303 coemullem 26304 aalioulem5 26393 aalioulem6 26394 sincosq1lem 26554 emcllem6 27059 ftalem3 27133 fsumvma2 27273 chpchtsum 27278 bcmono 27336 bposlem5 27347 gausslemma2dlem1a 27424 lgsquadlem1 27439 dchrisum0lem1 27575 pntrsumbnd2 27626 pntleml 27670 brbtwn2 28935 axlowdimlem17 28988 axlowdim 28991 crctcshwlkn0lem3 29842 crctcshwlkn0lem5 29844 wwlksubclwwlk 30087 eupth2lems 30267 nmoub3i 30802 ubthlem1 30899 ubthlem2 30900 nmopub2tALT 31938 nmfnleub2 31955 lnconi 32062 leoptr 32166 pjnmopi 32177 cdj3lem2b 32466 eulerpartlemb 34350 isbasisrelowllem1 37338 isbasisrelowllem2 37339 ltflcei 37595 itg2addnclem2 37659 itg2addnclem3 37660 itg2addnc 37661 dvasin 37691 incsequz 37735 mettrifi 37744 equivbnd 37777 bfplem1 37809 jm2.17b 42950 fmul01lt1lem2 45541 eluzge0nn0 47262 elfz2z 47265 iccpartiltu 47347 iccpartgt 47352 lighneallem2 47531 |
Copyright terms: Public domain | W3C validator |