| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > letr | Structured version Visualization version GIF version | ||
| Description: Transitive law. (Contributed by NM, 12-Nov-1999.) |
| Ref | Expression |
|---|---|
| letr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leloe 11348 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 3 | 2 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 ↔ (𝐵 < 𝐶 ∨ 𝐵 = 𝐶))) |
| 4 | lelttr 11352 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶)) | |
| 5 | ltle 11350 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) | |
| 6 | 5 | 3adant2 1131 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 7 | 4, 6 | syld 47 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 7 | expdimp 452 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 < 𝐶 → 𝐴 ≤ 𝐶)) |
| 9 | breq2 5146 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ 𝐶)) | |
| 10 | 9 | biimpcd 249 | . . . . 5 ⊢ (𝐴 ≤ 𝐵 → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 = 𝐶 → 𝐴 ≤ 𝐶)) |
| 12 | 8, 11 | jaod 859 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → ((𝐵 < 𝐶 ∨ 𝐵 = 𝐶) → 𝐴 ≤ 𝐶)) |
| 13 | 3, 12 | sylbid 240 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶)) |
| 14 | 13 | expimpd 453 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ℝcr 11155 < clt 11296 ≤ cle 11297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 |
| This theorem is referenced by: letri 11391 letrd 11419 le2add 11746 le2sub 11763 p1le 12113 lemul12b 12125 lemul12a 12126 zletr 12663 peano2uz2 12708 ledivge1le 13107 lemaxle 13238 elfz1b 13634 elfz0fzfz0 13674 fz0fzelfz0 13675 fz0fzdiffz0 13678 elfzmlbp 13680 difelfznle 13683 elincfzoext 13763 ssfzoulel 13800 ssfzo12bi 13801 flge 13846 flflp1 13848 fldiv4p1lem1div2 13876 fldiv4lem1div2uz2 13877 monoord 14074 le2sq2 14176 leexp2r 14215 expubnd 14218 facwordi 14329 faclbnd3 14332 facavg 14341 fi1uzind 14547 swrdswrdlem 14743 swrdccat 14774 01sqrexlem1 15282 01sqrexlem6 15287 01sqrexlem7 15288 leabs 15339 limsupbnd2 15520 rlim3 15535 lo1bdd2 15561 lo1bddrp 15562 o1lo1 15574 lo1mul 15665 lo1le 15689 isercolllem2 15703 iseraltlem2 15720 fsumabs 15838 cvgrat 15920 ruclem9 16275 algcvga 16617 prmdvdsfz 16743 prmfac1 16758 eulerthlem2 16820 modprm0 16844 prmreclem1 16955 prmreclem4 16958 4sqlem11 16994 vdwnnlem3 17036 zntoslem 21576 gsumbagdiaglem 21951 psdmul 22171 cnllycmp 24989 evth 24992 ovoliunlem2 25539 ovolicc2lem3 25555 itg2monolem1 25786 bddiblnc 25878 coeaddlem 26289 coemullem 26290 aalioulem5 26379 aalioulem6 26380 sincosq1lem 26540 emcllem6 27045 ftalem3 27119 fsumvma2 27259 chpchtsum 27264 bcmono 27322 bposlem5 27333 gausslemma2dlem1a 27410 lgsquadlem1 27425 dchrisum0lem1 27561 pntrsumbnd2 27612 pntleml 27656 brbtwn2 28921 axlowdimlem17 28974 axlowdim 28977 crctcshwlkn0lem3 29833 crctcshwlkn0lem5 29835 wwlksubclwwlk 30078 eupth2lems 30258 nmoub3i 30793 ubthlem1 30890 ubthlem2 30891 nmopub2tALT 31929 nmfnleub2 31946 lnconi 32053 leoptr 32157 pjnmopi 32168 cdj3lem2b 32457 eulerpartlemb 34371 isbasisrelowllem1 37357 isbasisrelowllem2 37358 ltflcei 37616 itg2addnclem2 37680 itg2addnclem3 37681 itg2addnc 37682 dvasin 37712 incsequz 37756 mettrifi 37765 equivbnd 37798 bfplem1 37830 jm2.17b 42978 fmul01lt1lem2 45605 eluzge0nn0 47329 elfz2z 47332 iccpartiltu 47414 iccpartgt 47419 lighneallem2 47598 |
| Copyright terms: Public domain | W3C validator |