Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem1 Structured version   Visualization version   GIF version

Theorem lincresunit3lem1 47730
Description: Lemma 1 for lincresunit3 47732. (Contributed by AV, 17-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠
Allowed substitution hints:   𝐵(𝑧)   𝑅(𝑧,𝑠)   𝑆(𝑧)   · (𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐹(𝑧)   𝐺(𝑧,𝑠)   𝐼(𝑧)   𝑀(𝑧)   𝑁(𝑧)   𝑋(𝑧)   0 (𝑧,𝑠)   𝑍(𝑧,𝑠)

Proof of Theorem lincresunit3lem1
StepHypRef Expression
1 lincresunit.g . . . . 5 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
2 fveq2 6896 . . . . . 6 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
32oveq2d 7435 . . . . 5 (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
4 simpr3 1193 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
5 ovexd 7454 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ V)
61, 3, 4, 5fvmptd3 7027 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺𝑧) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
76oveq1d 7434 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧))
87oveq2d 7435 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
9 simp2 1134 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
109adantr 479 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod)
11 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
1211lmodfgrp 20764 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
13123ad2ant2 1131 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
14 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
15 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
1614, 15unitcl 20326 . . . . 5 ((𝐹𝑋) ∈ 𝑈 → (𝐹𝑋) ∈ 𝐸)
17163ad2ant2 1131 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝐸)
18 lincresunit.n . . . . 5 𝑁 = (invg𝑅)
1914, 18grpinvcl 18952 . . . 4 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
2013, 17, 19syl2an 594 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
21 3simpa 1145 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
2221anim2i 615 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
23 eldifi 4123 . . . . . 6 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
24233ad2ant3 1132 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝑆)
2524adantl 480 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝑆)
26 lincresunit.b . . . . 5 𝐵 = (Base‘𝑀)
27 lincresunit.0 . . . . 5 0 = (0g𝑅)
28 lincresunit.z . . . . 5 𝑍 = (0g𝑀)
29 lincresunit.i . . . . 5 𝐼 = (invr𝑅)
30 lincresunit.t . . . . 5 · = (.r𝑅)
3126, 11, 14, 15, 27, 28, 18, 29, 30, 1lincresunitlem2 47727 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑧𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
3222, 25, 31syl2anc 582 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
33 elpwi 4611 . . . . . . . . 9 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
3433sseld 3975 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵 → (𝑧𝑆𝑧𝐵))
3523, 34syl5com 31 . . . . . . 7 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
36353ad2ant3 1132 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
3736com12 32 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
38373ad2ant1 1130 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
3938imp 405 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝐵)
40 eqid 2725 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4126, 11, 40, 14, 30lmodvsass 20782 . . . 4 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
4241eqcomd 2731 . . 3 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4310, 20, 32, 39, 42syl13anc 1369 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4411lmodring 20763 . . . . . 6 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
45443ad2ant2 1131 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
4645adantr 479 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring)
47 elmapi 8868 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
48 ffvelcdm 7090 . . . . . . 7 ((𝐹:𝑆𝐸𝑧𝑆) → (𝐹𝑧) ∈ 𝐸)
4947, 23, 48syl2an 594 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
50493adant2 1128 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
5150adantl 480 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑧) ∈ 𝐸)
52 simp2 1134 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
5352adantl 480 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑋) ∈ 𝑈)
5414, 15, 18, 29, 30invginvrid 47614 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝑧) ∈ 𝐸 ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5546, 51, 53, 54syl3anc 1368 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5655oveq1d 7434 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
578, 43, 563eqtrd 2769 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  cdif 3941  𝒫 cpw 4604  {csn 4630  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  Basecbs 17183  .rcmulr 17237  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424  Grpcgrp 18898  invgcminusg 18899  Ringcrg 20185  Unitcui 20306  invrcinvr 20338  LModclmod 20755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-lmod 20757
This theorem is referenced by:  lincresunit3lem2  47731
  Copyright terms: Public domain W3C validator