Proof of Theorem lincresunit3lem1
Step | Hyp | Ref
| Expression |
1 | | lincresunit.g |
. . . . 5
⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
2 | | fveq2 6774 |
. . . . . 6
⊢ (𝑠 = 𝑧 → (𝐹‘𝑠) = (𝐹‘𝑧)) |
3 | 2 | oveq2d 7291 |
. . . . 5
⊢ (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) = ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) |
4 | | simpr3 1195 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋})) |
5 | | ovexd 7310 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ V) |
6 | 1, 3, 4, 5 | fvmptd3 6898 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺‘𝑧) = ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) |
7 | 6 | oveq1d 7290 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) |
8 | 7 | oveq2d 7291 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧))) |
9 | | simp2 1136 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ LMod) |
10 | 9 | adantr 481 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod) |
11 | | lincresunit.r |
. . . . . 6
⊢ 𝑅 = (Scalar‘𝑀) |
12 | 11 | lmodfgrp 20132 |
. . . . 5
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
13 | 12 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Grp) |
14 | | lincresunit.e |
. . . . . 6
⊢ 𝐸 = (Base‘𝑅) |
15 | | lincresunit.u |
. . . . . 6
⊢ 𝑈 = (Unit‘𝑅) |
16 | 14, 15 | unitcl 19901 |
. . . . 5
⊢ ((𝐹‘𝑋) ∈ 𝑈 → (𝐹‘𝑋) ∈ 𝐸) |
17 | 16 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑋) ∈ 𝐸) |
18 | | lincresunit.n |
. . . . 5
⊢ 𝑁 = (invg‘𝑅) |
19 | 14, 18 | grpinvcl 18627 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝐹‘𝑋) ∈ 𝐸) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
20 | 13, 17, 19 | syl2an 596 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
21 | | 3simpa 1147 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) |
22 | 21 | anim2i 617 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈))) |
23 | | eldifi 4061 |
. . . . . 6
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧 ∈ 𝑆) |
24 | 23 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝑆) |
25 | 24 | adantl 482 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ 𝑆) |
26 | | lincresunit.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑀) |
27 | | lincresunit.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
28 | | lincresunit.z |
. . . . 5
⊢ 𝑍 = (0g‘𝑀) |
29 | | lincresunit.i |
. . . . 5
⊢ 𝐼 = (invr‘𝑅) |
30 | | lincresunit.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
31 | 26, 11, 14, 15, 27, 28, 18, 29, 30, 1 | lincresunitlem2 45817 |
. . . 4
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑧 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸) |
32 | 22, 25, 31 | syl2anc 584 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸) |
33 | | elpwi 4542 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵) |
34 | 33 | sseld 3920 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝐵)) |
35 | 23, 34 | syl5com 31 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵)) |
36 | 35 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵)) |
37 | 36 | com12 32 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝐵)) |
38 | 37 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝐵)) |
39 | 38 | imp 407 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ 𝐵) |
40 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
41 | 26, 11, 40, 14, 30 | lmodvsass 20148 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵)) → (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧))) |
42 | 41 | eqcomd 2744 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵)) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) = (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧)) |
43 | 10, 20, 32, 39, 42 | syl13anc 1371 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) = (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧)) |
44 | 11 | lmodring 20131 |
. . . . . 6
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
45 | 44 | 3ad2ant2 1133 |
. . . . 5
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
46 | 45 | adantr 481 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring) |
47 | | elmapi 8637 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) |
48 | | ffvelrn 6959 |
. . . . . . 7
⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝐸) |
49 | 47, 23, 48 | syl2an 596 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑧) ∈ 𝐸) |
50 | 49 | 3adant2 1130 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑧) ∈ 𝐸) |
51 | 50 | adantl 482 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹‘𝑧) ∈ 𝐸) |
52 | | simp2 1136 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑋) ∈ 𝑈) |
53 | 52 | adantl 482 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹‘𝑋) ∈ 𝑈) |
54 | 14, 15, 18, 29, 30 | invginvrid 45703 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹‘𝑧) ∈ 𝐸 ∧ (𝐹‘𝑋) ∈ 𝑈) → ((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) = (𝐹‘𝑧)) |
55 | 46, 51, 53, 54 | syl3anc 1370 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) = (𝐹‘𝑧)) |
56 | 55 | oveq1d 7290 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
57 | 8, 43, 56 | 3eqtrd 2782 |
1
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) |