Proof of Theorem lincresunit3lem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lincresunit.g | . . . . 5
⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) | 
| 2 |  | fveq2 6906 | . . . . . 6
⊢ (𝑠 = 𝑧 → (𝐹‘𝑠) = (𝐹‘𝑧)) | 
| 3 | 2 | oveq2d 7447 | . . . . 5
⊢ (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) = ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) | 
| 4 |  | simpr3 1197 | . . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋})) | 
| 5 |  | ovexd 7466 | . . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ V) | 
| 6 | 1, 3, 4, 5 | fvmptd3 7039 | . . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺‘𝑧) = ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) | 
| 7 | 6 | oveq1d 7446 | . . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) | 
| 8 | 7 | oveq2d 7447 | . 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧))) | 
| 9 |  | simp2 1138 | . . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ LMod) | 
| 10 | 9 | adantr 480 | . . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod) | 
| 11 |  | lincresunit.r | . . . . . 6
⊢ 𝑅 = (Scalar‘𝑀) | 
| 12 | 11 | lmodfgrp 20867 | . . . . 5
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) | 
| 13 | 12 | 3ad2ant2 1135 | . . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Grp) | 
| 14 |  | lincresunit.e | . . . . . 6
⊢ 𝐸 = (Base‘𝑅) | 
| 15 |  | lincresunit.u | . . . . . 6
⊢ 𝑈 = (Unit‘𝑅) | 
| 16 | 14, 15 | unitcl 20375 | . . . . 5
⊢ ((𝐹‘𝑋) ∈ 𝑈 → (𝐹‘𝑋) ∈ 𝐸) | 
| 17 | 16 | 3ad2ant2 1135 | . . . 4
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑋) ∈ 𝐸) | 
| 18 |  | lincresunit.n | . . . . 5
⊢ 𝑁 = (invg‘𝑅) | 
| 19 | 14, 18 | grpinvcl 19005 | . . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝐹‘𝑋) ∈ 𝐸) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) | 
| 20 | 13, 17, 19 | syl2an 596 | . . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) | 
| 21 |  | 3simpa 1149 | . . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) | 
| 22 | 21 | anim2i 617 | . . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈))) | 
| 23 |  | eldifi 4131 | . . . . . 6
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧 ∈ 𝑆) | 
| 24 | 23 | 3ad2ant3 1136 | . . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝑆) | 
| 25 | 24 | adantl 481 | . . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ 𝑆) | 
| 26 |  | lincresunit.b | . . . . 5
⊢ 𝐵 = (Base‘𝑀) | 
| 27 |  | lincresunit.0 | . . . . 5
⊢  0 =
(0g‘𝑅) | 
| 28 |  | lincresunit.z | . . . . 5
⊢ 𝑍 = (0g‘𝑀) | 
| 29 |  | lincresunit.i | . . . . 5
⊢ 𝐼 = (invr‘𝑅) | 
| 30 |  | lincresunit.t | . . . . 5
⊢  · =
(.r‘𝑅) | 
| 31 | 26, 11, 14, 15, 27, 28, 18, 29, 30, 1 | lincresunitlem2 48393 | . . . 4
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑧 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸) | 
| 32 | 22, 25, 31 | syl2anc 584 | . . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸) | 
| 33 |  | elpwi 4607 | . . . . . . . . 9
⊢ (𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵) | 
| 34 | 33 | sseld 3982 | . . . . . . . 8
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝐵)) | 
| 35 | 23, 34 | syl5com 31 | . . . . . . 7
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵)) | 
| 36 | 35 | 3ad2ant3 1136 | . . . . . 6
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵)) | 
| 37 | 36 | com12 32 | . . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝐵)) | 
| 38 | 37 | 3ad2ant1 1134 | . . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝐵)) | 
| 39 | 38 | imp 406 | . . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ 𝐵) | 
| 40 |  | eqid 2737 | . . . . 5
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) | 
| 41 | 26, 11, 40, 14, 30 | lmodvsass 20885 | . . . 4
⊢ ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵)) → (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧))) | 
| 42 | 41 | eqcomd 2743 | . . 3
⊢ ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵)) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) = (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧)) | 
| 43 | 10, 20, 32, 39, 42 | syl13anc 1374 | . 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) = (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧)) | 
| 44 | 11 | lmodring 20866 | . . . . . 6
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) | 
| 45 | 44 | 3ad2ant2 1135 | . . . . 5
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) | 
| 46 | 45 | adantr 480 | . . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring) | 
| 47 |  | elmapi 8889 | . . . . . . 7
⊢ (𝐹 ∈ (𝐸 ↑m 𝑆) → 𝐹:𝑆⟶𝐸) | 
| 48 |  | ffvelcdm 7101 | . . . . . . 7
⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝐸) | 
| 49 | 47, 23, 48 | syl2an 596 | . . . . . 6
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑧) ∈ 𝐸) | 
| 50 | 49 | 3adant2 1132 | . . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑧) ∈ 𝐸) | 
| 51 | 50 | adantl 481 | . . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹‘𝑧) ∈ 𝐸) | 
| 52 |  | simp2 1138 | . . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑋) ∈ 𝑈) | 
| 53 | 52 | adantl 481 | . . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹‘𝑋) ∈ 𝑈) | 
| 54 | 14, 15, 18, 29, 30 | invginvrid 48283 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹‘𝑧) ∈ 𝐸 ∧ (𝐹‘𝑋) ∈ 𝑈) → ((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) = (𝐹‘𝑧)) | 
| 55 | 46, 51, 53, 54 | syl3anc 1373 | . . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) = (𝐹‘𝑧)) | 
| 56 | 55 | oveq1d 7446 | . 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) | 
| 57 | 8, 43, 56 | 3eqtrd 2781 | 1
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) |