Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem1 Structured version   Visualization version   GIF version

Theorem lincresunit3lem1 46260
Description: Lemma 1 for lincresunit3 46262. (Contributed by AV, 17-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠
Allowed substitution hints:   𝐵(𝑧)   𝑅(𝑧,𝑠)   𝑆(𝑧)   · (𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐹(𝑧)   𝐺(𝑧,𝑠)   𝐼(𝑧)   𝑀(𝑧)   𝑁(𝑧)   𝑋(𝑧)   0 (𝑧,𝑠)   𝑍(𝑧,𝑠)

Proof of Theorem lincresunit3lem1
StepHypRef Expression
1 lincresunit.g . . . . 5 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
2 fveq2 6838 . . . . . 6 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
32oveq2d 7366 . . . . 5 (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
4 simpr3 1197 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
5 ovexd 7385 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ V)
61, 3, 4, 5fvmptd3 6967 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺𝑧) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
76oveq1d 7365 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧))
87oveq2d 7366 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
9 simp2 1138 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
109adantr 482 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod)
11 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
1211lmodfgrp 20254 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
13123ad2ant2 1135 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
14 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
15 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
1614, 15unitcl 20011 . . . . 5 ((𝐹𝑋) ∈ 𝑈 → (𝐹𝑋) ∈ 𝐸)
17163ad2ant2 1135 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝐸)
18 lincresunit.n . . . . 5 𝑁 = (invg𝑅)
1914, 18grpinvcl 18733 . . . 4 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
2013, 17, 19syl2an 597 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
21 3simpa 1149 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
2221anim2i 618 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
23 eldifi 4085 . . . . . 6 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
24233ad2ant3 1136 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝑆)
2524adantl 483 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝑆)
26 lincresunit.b . . . . 5 𝐵 = (Base‘𝑀)
27 lincresunit.0 . . . . 5 0 = (0g𝑅)
28 lincresunit.z . . . . 5 𝑍 = (0g𝑀)
29 lincresunit.i . . . . 5 𝐼 = (invr𝑅)
30 lincresunit.t . . . . 5 · = (.r𝑅)
3126, 11, 14, 15, 27, 28, 18, 29, 30, 1lincresunitlem2 46257 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑧𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
3222, 25, 31syl2anc 585 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
33 elpwi 4566 . . . . . . . . 9 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
3433sseld 3942 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵 → (𝑧𝑆𝑧𝐵))
3523, 34syl5com 31 . . . . . . 7 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
36353ad2ant3 1136 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
3736com12 32 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
38373ad2ant1 1134 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
3938imp 408 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝐵)
40 eqid 2738 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4126, 11, 40, 14, 30lmodvsass 20270 . . . 4 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
4241eqcomd 2744 . . 3 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4310, 20, 32, 39, 42syl13anc 1373 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4411lmodring 20253 . . . . . 6 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
45443ad2ant2 1135 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
4645adantr 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring)
47 elmapi 8721 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
48 ffvelcdm 7028 . . . . . . 7 ((𝐹:𝑆𝐸𝑧𝑆) → (𝐹𝑧) ∈ 𝐸)
4947, 23, 48syl2an 597 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
50493adant2 1132 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
5150adantl 483 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑧) ∈ 𝐸)
52 simp2 1138 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
5352adantl 483 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑋) ∈ 𝑈)
5414, 15, 18, 29, 30invginvrid 46143 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝑧) ∈ 𝐸 ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5546, 51, 53, 54syl3anc 1372 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5655oveq1d 7365 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
578, 43, 563eqtrd 2782 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3444  cdif 3906  𝒫 cpw 4559  {csn 4585  cmpt 5187  wf 6488  cfv 6492  (class class class)co 7350  m cmap 8699  Basecbs 17018  .rcmulr 17069  Scalarcsca 17071   ·𝑠 cvsca 17072  0gc0g 17256  Grpcgrp 18683  invgcminusg 18684  Ringcrg 19888  Unitcui 19991  invrcinvr 20023  LModclmod 20245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-tpos 8125  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-map 8701  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-nn 12088  df-2 12150  df-3 12151  df-sets 16971  df-slot 16989  df-ndx 17001  df-base 17019  df-ress 17048  df-plusg 17081  df-mulr 17082  df-0g 17258  df-mgm 18432  df-sgrp 18481  df-mnd 18492  df-grp 18686  df-minusg 18687  df-mgp 19826  df-ur 19843  df-ring 19890  df-oppr 19972  df-dvdsr 19993  df-unit 19994  df-invr 20024  df-lmod 20247
This theorem is referenced by:  lincresunit3lem2  46261
  Copyright terms: Public domain W3C validator