Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem1 Structured version   Visualization version   GIF version

Theorem lincresunit3lem1 44436
 Description: Lemma 1 for lincresunit3 44438. (Contributed by AV, 17-May-2019.)
Hypotheses
Ref Expression
lincresunit.b 𝐵 = (Base‘𝑀)
lincresunit.r 𝑅 = (Scalar‘𝑀)
lincresunit.e 𝐸 = (Base‘𝑅)
lincresunit.u 𝑈 = (Unit‘𝑅)
lincresunit.0 0 = (0g𝑅)
lincresunit.z 𝑍 = (0g𝑀)
lincresunit.n 𝑁 = (invg𝑅)
lincresunit.i 𝐼 = (invr𝑅)
lincresunit.t · = (.r𝑅)
lincresunit.g 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
Assertion
Ref Expression
lincresunit3lem1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
Distinct variable groups:   𝐵,𝑠   𝐸,𝑠   𝐹,𝑠   𝑀,𝑠   𝑆,𝑠   𝑋,𝑠   𝑈,𝑠   𝐼,𝑠   𝑁,𝑠   · ,𝑠   𝑧,𝑠
Allowed substitution hints:   𝐵(𝑧)   𝑅(𝑧,𝑠)   𝑆(𝑧)   · (𝑧)   𝑈(𝑧)   𝐸(𝑧)   𝐹(𝑧)   𝐺(𝑧,𝑠)   𝐼(𝑧)   𝑀(𝑧)   𝑁(𝑧)   𝑋(𝑧)   0 (𝑧,𝑠)   𝑍(𝑧,𝑠)

Proof of Theorem lincresunit3lem1
StepHypRef Expression
1 lincresunit.g . . . . 5 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)))
2 fveq2 6669 . . . . . 6 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
32oveq2d 7166 . . . . 5 (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑠)) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
4 simpr3 1190 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋}))
5 ovexd 7185 . . . . 5 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ V)
61, 3, 4, 5fvmptd3 6789 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺𝑧) = ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))
76oveq1d 7165 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺𝑧)( ·𝑠𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧))
87oveq2d 7166 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
9 simp2 1131 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑀 ∈ LMod)
109adantr 481 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod)
11 lincresunit.r . . . . . 6 𝑅 = (Scalar‘𝑀)
1211lmodfgrp 19579 . . . . 5 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
13123ad2ant2 1128 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Grp)
14 lincresunit.e . . . . . 6 𝐸 = (Base‘𝑅)
15 lincresunit.u . . . . . 6 𝑈 = (Unit‘𝑅)
1614, 15unitcl 19345 . . . . 5 ((𝐹𝑋) ∈ 𝑈 → (𝐹𝑋) ∈ 𝐸)
17163ad2ant2 1128 . . . 4 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝐸)
18 lincresunit.n . . . . 5 𝑁 = (invg𝑅)
1914, 18grpinvcl 18096 . . . 4 ((𝑅 ∈ Grp ∧ (𝐹𝑋) ∈ 𝐸) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
2013, 17, 19syl2an 595 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹𝑋)) ∈ 𝐸)
21 3simpa 1142 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈))
2221anim2i 616 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)))
23 eldifi 4107 . . . . . 6 (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧𝑆)
24233ad2ant3 1129 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝑆)
2524adantl 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝑆)
26 lincresunit.b . . . . 5 𝐵 = (Base‘𝑀)
27 lincresunit.0 . . . . 5 0 = (0g𝑅)
28 lincresunit.z . . . . 5 𝑍 = (0g𝑀)
29 lincresunit.i . . . . 5 𝐼 = (invr𝑅)
30 lincresunit.t . . . . 5 · = (.r𝑅)
3126, 11, 14, 15, 27, 28, 18, 29, 30, 1lincresunitlem2 44433 . . . 4 ((((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈)) ∧ 𝑧𝑆) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
3222, 25, 31syl2anc 584 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸)
33 elpwi 4554 . . . . . . . . 9 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
3433sseld 3970 . . . . . . . 8 (𝑆 ∈ 𝒫 𝐵 → (𝑧𝑆𝑧𝐵))
3523, 34syl5com 31 . . . . . . 7 (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
36353ad2ant3 1129 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵𝑧𝐵))
3736com12 32 . . . . 5 (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
38373ad2ant1 1127 . . . 4 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧𝐵))
3938imp 407 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧𝐵)
40 eqid 2826 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4126, 11, 40, 14, 30lmodvsass 19595 . . . 4 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)))
4241eqcomd 2832 . . 3 ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)) ∈ 𝐸𝑧𝐵)) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4310, 20, 32, 39, 42syl13anc 1366 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)(((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))( ·𝑠𝑀)𝑧)) = (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧))
4411lmodring 19578 . . . . . 6 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
45443ad2ant2 1128 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) → 𝑅 ∈ Ring)
4645adantr 481 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring)
47 elmapi 8423 . . . . . . 7 (𝐹 ∈ (𝐸m 𝑆) → 𝐹:𝑆𝐸)
48 ffvelrn 6847 . . . . . . 7 ((𝐹:𝑆𝐸𝑧𝑆) → (𝐹𝑧) ∈ 𝐸)
4947, 23, 48syl2an 595 . . . . . 6 ((𝐹 ∈ (𝐸m 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
50493adant2 1125 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑧) ∈ 𝐸)
5150adantl 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑧) ∈ 𝐸)
52 simp2 1131 . . . . 5 ((𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹𝑋) ∈ 𝑈)
5352adantl 482 . . . 4 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹𝑋) ∈ 𝑈)
5414, 15, 18, 29, 30invginvrid 44317 . . . 4 ((𝑅 ∈ Ring ∧ (𝐹𝑧) ∈ 𝐸 ∧ (𝐹𝑋) ∈ 𝑈) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5546, 51, 53, 54syl3anc 1365 . . 3 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧))) = (𝐹𝑧))
5655oveq1d 7165 . 2 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹𝑋)) · ((𝐼‘(𝑁‘(𝐹𝑋))) · (𝐹𝑧)))( ·𝑠𝑀)𝑧) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
578, 43, 563eqtrd 2865 1 (((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod ∧ 𝑋𝑆) ∧ (𝐹 ∈ (𝐸m 𝑆) ∧ (𝐹𝑋) ∈ 𝑈𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹𝑋))( ·𝑠𝑀)((𝐺𝑧)( ·𝑠𝑀)𝑧)) = ((𝐹𝑧)( ·𝑠𝑀)𝑧))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  Vcvv 3500   ∖ cdif 3937  𝒫 cpw 4542  {csn 4564   ↦ cmpt 5143  ⟶wf 6350  ‘cfv 6354  (class class class)co 7150   ↑m cmap 8401  Basecbs 16478  .rcmulr 16561  Scalarcsca 16563   ·𝑠 cvsca 16564  0gc0g 16708  Grpcgrp 18048  invgcminusg 18049  Ringcrg 19233  Unitcui 19325  invrcinvr 19357  LModclmod 19570 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-minusg 18052  df-mgp 19176  df-ur 19188  df-ring 19235  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-invr 19358  df-lmod 19572 This theorem is referenced by:  lincresunit3lem2  44437
 Copyright terms: Public domain W3C validator