![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ascl0 | Structured version Visualization version GIF version |
Description: The scalar 0 embedded into a left module corresponds to the 0 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
ascl0.a | β’ π΄ = (algScβπ) |
ascl0.f | β’ πΉ = (Scalarβπ) |
ascl0.l | β’ (π β π β LMod) |
ascl0.r | β’ (π β π β Ring) |
Ref | Expression |
---|---|
ascl0 | β’ (π β (π΄β(0gβπΉ)) = (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ascl0.l | . . . . 5 β’ (π β π β LMod) | |
2 | ascl0.f | . . . . . 6 β’ πΉ = (Scalarβπ) | |
3 | 2 | lmodfgrp 20707 | . . . . 5 β’ (π β LMod β πΉ β Grp) |
4 | 1, 3 | syl 17 | . . . 4 β’ (π β πΉ β Grp) |
5 | eqid 2724 | . . . . 5 β’ (BaseβπΉ) = (BaseβπΉ) | |
6 | eqid 2724 | . . . . 5 β’ (0gβπΉ) = (0gβπΉ) | |
7 | 5, 6 | grpidcl 18887 | . . . 4 β’ (πΉ β Grp β (0gβπΉ) β (BaseβπΉ)) |
8 | 4, 7 | syl 17 | . . 3 β’ (π β (0gβπΉ) β (BaseβπΉ)) |
9 | ascl0.a | . . . 4 β’ π΄ = (algScβπ) | |
10 | eqid 2724 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
11 | eqid 2724 | . . . 4 β’ (1rβπ) = (1rβπ) | |
12 | 9, 2, 5, 10, 11 | asclval 21744 | . . 3 β’ ((0gβπΉ) β (BaseβπΉ) β (π΄β(0gβπΉ)) = ((0gβπΉ)( Β·π βπ)(1rβπ))) |
13 | 8, 12 | syl 17 | . 2 β’ (π β (π΄β(0gβπΉ)) = ((0gβπΉ)( Β·π βπ)(1rβπ))) |
14 | ascl0.r | . . . 4 β’ (π β π β Ring) | |
15 | eqid 2724 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
16 | 15, 11 | ringidcl 20157 | . . . 4 β’ (π β Ring β (1rβπ) β (Baseβπ)) |
17 | 14, 16 | syl 17 | . . 3 β’ (π β (1rβπ) β (Baseβπ)) |
18 | eqid 2724 | . . . 4 β’ (0gβπ) = (0gβπ) | |
19 | 15, 2, 10, 6, 18 | lmod0vs 20733 | . . 3 β’ ((π β LMod β§ (1rβπ) β (Baseβπ)) β ((0gβπΉ)( Β·π βπ)(1rβπ)) = (0gβπ)) |
20 | 1, 17, 19 | syl2anc 583 | . 2 β’ (π β ((0gβπΉ)( Β·π βπ)(1rβπ)) = (0gβπ)) |
21 | 13, 20 | eqtrd 2764 | 1 β’ (π β (π΄β(0gβπΉ)) = (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βcfv 6534 (class class class)co 7402 Basecbs 17145 Scalarcsca 17201 Β·π cvsca 17202 0gc0g 17386 Grpcgrp 18855 1rcur 20078 Ringcrg 20130 LModclmod 20698 algSccascl 21717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-plusg 17211 df-0g 17388 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-mgp 20032 df-ur 20079 df-ring 20132 df-lmod 20700 df-ascl 21720 |
This theorem is referenced by: ply1scl0 22133 ply1ascl0 33122 mplascl0 41619 assaascl0 47274 |
Copyright terms: Public domain | W3C validator |