Proof of Theorem lspsnneg
| Step | Hyp | Ref
| Expression |
| 1 | | lspsnneg.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
| 2 | | lspsnneg.m |
. . . . . 6
⊢ 𝑀 = (invg‘𝑊) |
| 3 | | eqid 2737 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 4 | | eqid 2737 |
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 5 | | eqid 2737 |
. . . . . 6
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
| 6 | | eqid 2737 |
. . . . . 6
⊢
(invg‘(Scalar‘𝑊)) =
(invg‘(Scalar‘𝑊)) |
| 7 | 1, 2, 3, 4, 5, 6 | lmodvneg1 20903 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑋) = (𝑀‘𝑋)) |
| 8 | 7 | sneqd 4638 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑋)} = {(𝑀‘𝑋)}) |
| 9 | 8 | fveq2d 6910 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)𝑋)}) = (𝑁‘{(𝑀‘𝑋)})) |
| 10 | | simpl 482 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 11 | 3 | lmodfgrp 20867 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Grp) |
| 12 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 13 | 3, 12, 5 | lmod1cl 20887 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
| 14 | 12, 6 | grpinvcl 19005 |
. . . . . 6
⊢
(((Scalar‘𝑊)
∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
| 15 | 11, 13, 14 | syl2anc 584 |
. . . . 5
⊢ (𝑊 ∈ LMod →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
| 17 | | simpr 484 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
| 18 | | lspsnneg.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑊) |
| 19 | 3, 12, 1, 4, 18 | lspsnvsi 21002 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)𝑋)}) ⊆ (𝑁‘{𝑋})) |
| 20 | 10, 16, 17, 19 | syl3anc 1373 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)𝑋)}) ⊆ (𝑁‘{𝑋})) |
| 21 | 9, 20 | eqsstrrd 4019 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑀‘𝑋)}) ⊆ (𝑁‘{𝑋})) |
| 22 | 1, 2 | lmodvnegcl 20901 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑀‘𝑋) ∈ 𝑉) |
| 23 | 1, 2, 3, 4, 5, 6 | lmodvneg1 20903 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑀‘𝑋) ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋)) = (𝑀‘(𝑀‘𝑋))) |
| 24 | 22, 23 | syldan 591 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋)) = (𝑀‘(𝑀‘𝑋))) |
| 25 | | lmodgrp 20865 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| 26 | 1, 2 | grpinvinv 19023 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝑀‘𝑋)) = 𝑋) |
| 27 | 25, 26 | sylan 580 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝑀‘𝑋)) = 𝑋) |
| 28 | 24, 27 | eqtrd 2777 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋)) = 𝑋) |
| 29 | 28 | sneqd 4638 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋))} = {𝑋}) |
| 30 | 29 | fveq2d 6910 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)(𝑀‘𝑋))}) = (𝑁‘{𝑋})) |
| 31 | 3, 12, 1, 4, 18 | lspsnvsi 21002 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ (𝑀‘𝑋) ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)(𝑀‘𝑋))}) ⊆ (𝑁‘{(𝑀‘𝑋)})) |
| 32 | 10, 16, 22, 31 | syl3anc 1373 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)(𝑀‘𝑋))}) ⊆ (𝑁‘{(𝑀‘𝑋)})) |
| 33 | 30, 32 | eqsstrrd 4019 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑀‘𝑋)})) |
| 34 | 21, 33 | eqssd 4001 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑀‘𝑋)}) = (𝑁‘{𝑋})) |