Proof of Theorem lspsnneg
Step | Hyp | Ref
| Expression |
1 | | lspsnneg.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
2 | | lspsnneg.m |
. . . . . 6
⊢ 𝑀 = (invg‘𝑊) |
3 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
4 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
5 | | eqid 2738 |
. . . . . 6
⊢
(1r‘(Scalar‘𝑊)) =
(1r‘(Scalar‘𝑊)) |
6 | | eqid 2738 |
. . . . . 6
⊢
(invg‘(Scalar‘𝑊)) =
(invg‘(Scalar‘𝑊)) |
7 | 1, 2, 3, 4, 5, 6 | lmodvneg1 20166 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑋) = (𝑀‘𝑋)) |
8 | 7 | sneqd 4573 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)𝑋)} = {(𝑀‘𝑋)}) |
9 | 8 | fveq2d 6778 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)𝑋)}) = (𝑁‘{(𝑀‘𝑋)})) |
10 | | simpl 483 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
11 | 3 | lmodfgrp 20132 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Grp) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
13 | 3, 12, 5 | lmod1cl 20150 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
14 | 12, 6 | grpinvcl 18627 |
. . . . . 6
⊢
(((Scalar‘𝑊)
∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
15 | 11, 13, 14 | syl2anc 584 |
. . . . 5
⊢ (𝑊 ∈ LMod →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
16 | 15 | adantr 481 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))) |
17 | | simpr 485 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
18 | | lspsnneg.n |
. . . . 5
⊢ 𝑁 = (LSpan‘𝑊) |
19 | 3, 12, 1, 4, 18 | lspsnvsi 20266 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)𝑋)}) ⊆ (𝑁‘{𝑋})) |
20 | 10, 16, 17, 19 | syl3anc 1370 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)𝑋)}) ⊆ (𝑁‘{𝑋})) |
21 | 9, 20 | eqsstrrd 3960 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑀‘𝑋)}) ⊆ (𝑁‘{𝑋})) |
22 | 1, 2 | lmodvnegcl 20164 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑀‘𝑋) ∈ 𝑉) |
23 | 1, 2, 3, 4, 5, 6 | lmodvneg1 20166 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑀‘𝑋) ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋)) = (𝑀‘(𝑀‘𝑋))) |
24 | 22, 23 | syldan 591 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋)) = (𝑀‘(𝑀‘𝑋))) |
25 | | lmodgrp 20130 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
26 | 1, 2 | grpinvinv 18642 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝑀‘𝑋)) = 𝑋) |
27 | 25, 26 | sylan 580 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑀‘(𝑀‘𝑋)) = 𝑋) |
28 | 24, 27 | eqtrd 2778 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋)) = 𝑋) |
29 | 28 | sneqd 4573 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) →
{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))(
·𝑠 ‘𝑊)(𝑀‘𝑋))} = {𝑋}) |
30 | 29 | fveq2d 6778 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)(𝑀‘𝑋))}) = (𝑁‘{𝑋})) |
31 | 3, 12, 1, 4, 18 | lspsnvsi 20266 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧
((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈
(Base‘(Scalar‘𝑊))
∧ (𝑀‘𝑋) ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)(𝑀‘𝑋))}) ⊆ (𝑁‘{(𝑀‘𝑋)})) |
32 | 10, 16, 22, 31 | syl3anc 1370 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠
‘𝑊)(𝑀‘𝑋))}) ⊆ (𝑁‘{(𝑀‘𝑋)})) |
33 | 30, 32 | eqsstrrd 3960 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑀‘𝑋)})) |
34 | 21, 33 | eqssd 3938 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑀‘𝑋)}) = (𝑁‘{𝑋})) |