Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp Structured version   Visualization version   GIF version

Theorem lkrlsp 39083
Description: The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 39070) is the whole vector space. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
lkrlsp.d 𝐷 = (Scalar‘𝑊)
lkrlsp.o 0 = (0g𝐷)
lkrlsp.v 𝑉 = (Base‘𝑊)
lkrlsp.n 𝑁 = (LSpan‘𝑊)
lkrlsp.p = (LSSum‘𝑊)
lkrlsp.f 𝐹 = (LFnl‘𝑊)
lkrlsp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 21028 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑊 ∈ LMod)
3 simp2r 1201 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝐺𝐹)
4 lkrlsp.f . . . . . 6 𝐹 = (LFnl‘𝑊)
5 lkrlsp.k . . . . . 6 𝐾 = (LKer‘𝑊)
6 eqid 2729 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 39076 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp2l 1200 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑋𝑉)
10 lkrlsp.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lkrlsp.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 6, 11lspsncl 20898 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
132, 9, 12syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
14 lkrlsp.p . . . . 5 = (LSSum‘𝑊)
156, 14lsmcl 21005 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
162, 8, 13, 15syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
1710, 6lssss 20857 . . 3 (((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
1816, 17syl 17 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
19 simpl1 1192 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LVec)
2019, 1syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LMod)
21 simpr 484 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢𝑉)
22 lkrlsp.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
2322lmodring 20789 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2420, 23syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Ring)
25 simpl2r 1228 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐺𝐹)
26 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
2722, 26, 10, 4lflcl 39045 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2819, 25, 21, 27syl3anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2922lvecdrng 21027 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
3019, 29syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ DivRing)
31 simpl2l 1227 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑋𝑉)
3222, 26, 10, 4lflcl 39045 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
3319, 25, 31, 32syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
34 simpl3 1194 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ≠ 0 )
35 lkrlsp.o . . . . . . . 8 0 = (0g𝐷)
36 eqid 2729 . . . . . . . 8 (invr𝐷) = (invr𝐷)
3726, 35, 36drnginvrcl 20656 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
3830, 33, 34, 37syl3anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
39 eqid 2729 . . . . . . 7 (.r𝐷) = (.r𝐷)
4026, 39ringcl 20153 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
4124, 28, 38, 40syl3anc 1373 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
42 eqid 2729 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4310, 22, 42, 26lmodvscl 20799 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
4420, 41, 31, 43syl3anc 1373 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
45 eqid 2729 . . . . 5 (+g𝑊) = (+g𝑊)
46 eqid 2729 . . . . 5 (-g𝑊) = (-g𝑊)
4710, 45, 46lmodvnpcan 20837 . . . 4 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
4820, 21, 44, 47syl3anc 1373 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
496lsssssubg 20879 . . . . . 6 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5020, 49syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
518adantr 480 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
5250, 51sseldd 3938 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (SubGrp‘𝑊))
5313adantr 480 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5450, 53sseldd 3938 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
5510, 46lmodvsubcl 20828 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
5620, 21, 44, 55syl3anc 1373 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
57 eqid 2729 . . . . . . . 8 (-g𝐷) = (-g𝐷)
5822, 57, 10, 46, 4lflsub 39048 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
5920, 25, 21, 44, 58syl112anc 1376 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
6022, 26, 39, 10, 42, 4lflmul 39049 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉)) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6120, 25, 41, 31, 60syl112anc 1376 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6226, 39ringass 20156 . . . . . . . . 9 ((𝐷 ∈ Ring ∧ ((𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷))) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
6324, 28, 38, 33, 62syl13anc 1374 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
64 eqid 2729 . . . . . . . . . . . 12 (1r𝐷) = (1r𝐷)
6526, 35, 39, 64, 36drnginvrl 20659 . . . . . . . . . . 11 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6630, 33, 34, 65syl3anc 1373 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6766oveq2d 7369 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = ((𝐺𝑢)(.r𝐷)(1r𝐷)))
6826, 39, 64ringridm 20173 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
6924, 28, 68syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
7067, 69eqtrd 2764 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = (𝐺𝑢))
7161, 63, 703eqtrd 2768 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (𝐺𝑢))
7271oveq2d 7369 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺𝑢)))
7322lmodfgrp 20790 . . . . . . . 8 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
7420, 73syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Grp)
7526, 35, 57grpsubid 18921 . . . . . . 7 ((𝐷 ∈ Grp ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7674, 28, 75syl2anc 584 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7759, 72, 763eqtrd 2768 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )
7810, 22, 35, 4, 5ellkr 39070 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
7919, 25, 78syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
8056, 77, 79mpbir2and 713 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺))
8110, 42, 22, 26, 11, 20, 41, 31ellspsni 20922 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
8245, 14lsmelvali 19547 . . . 4 ((((𝐾𝐺) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) ∧ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8352, 54, 80, 81, 82syl22anc 838 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8448, 83eqeltrrd 2829 . 2 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢 ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8518, 84eqelssd 3959 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3905  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  SubGrpcsubg 19017  LSSumclsm 19531  1rcur 20084  Ringcrg 20136  invrcinvr 20290  DivRingcdr 20632  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  LVecclvec 21024  LFnlclfn 39038  LKerclk 39066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lfl 39039  df-lkr 39067
This theorem is referenced by:  lkrlsp2  39084
  Copyright terms: Public domain W3C validator