Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp Structured version   Visualization version   GIF version

Theorem lkrlsp 38574
Description: The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 38561) is the whole vector space. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
lkrlsp.d 𝐷 = (Scalar‘𝑊)
lkrlsp.o 0 = (0g𝐷)
lkrlsp.v 𝑉 = (Base‘𝑊)
lkrlsp.n 𝑁 = (LSpan‘𝑊)
lkrlsp.p = (LSSum‘𝑊)
lkrlsp.f 𝐹 = (LFnl‘𝑊)
lkrlsp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 20991 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1131 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑊 ∈ LMod)
3 simp2r 1198 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝐺𝐹)
4 lkrlsp.f . . . . . 6 𝐹 = (LFnl‘𝑊)
5 lkrlsp.k . . . . . 6 𝐾 = (LKer‘𝑊)
6 eqid 2728 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 38567 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 583 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp2l 1197 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑋𝑉)
10 lkrlsp.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lkrlsp.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 6, 11lspsncl 20861 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
132, 9, 12syl2anc 583 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
14 lkrlsp.p . . . . 5 = (LSSum‘𝑊)
156, 14lsmcl 20968 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
162, 8, 13, 15syl3anc 1369 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
1710, 6lssss 20820 . . 3 (((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
1816, 17syl 17 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
19 simpl1 1189 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LVec)
2019, 1syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LMod)
21 simpr 484 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢𝑉)
22 lkrlsp.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
2322lmodring 20751 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2420, 23syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Ring)
25 simpl2r 1225 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐺𝐹)
26 eqid 2728 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
2722, 26, 10, 4lflcl 38536 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2819, 25, 21, 27syl3anc 1369 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2922lvecdrng 20990 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
3019, 29syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ DivRing)
31 simpl2l 1224 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑋𝑉)
3222, 26, 10, 4lflcl 38536 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
3319, 25, 31, 32syl3anc 1369 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
34 simpl3 1191 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ≠ 0 )
35 lkrlsp.o . . . . . . . 8 0 = (0g𝐷)
36 eqid 2728 . . . . . . . 8 (invr𝐷) = (invr𝐷)
3726, 35, 36drnginvrcl 20646 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
3830, 33, 34, 37syl3anc 1369 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
39 eqid 2728 . . . . . . 7 (.r𝐷) = (.r𝐷)
4026, 39ringcl 20190 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
4124, 28, 38, 40syl3anc 1369 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
42 eqid 2728 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4310, 22, 42, 26lmodvscl 20761 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
4420, 41, 31, 43syl3anc 1369 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
45 eqid 2728 . . . . 5 (+g𝑊) = (+g𝑊)
46 eqid 2728 . . . . 5 (-g𝑊) = (-g𝑊)
4710, 45, 46lmodvnpcan 20799 . . . 4 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
4820, 21, 44, 47syl3anc 1369 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
496lsssssubg 20842 . . . . . 6 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5020, 49syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
518adantr 480 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
5250, 51sseldd 3981 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (SubGrp‘𝑊))
5313adantr 480 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5450, 53sseldd 3981 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
5510, 46lmodvsubcl 20790 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
5620, 21, 44, 55syl3anc 1369 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
57 eqid 2728 . . . . . . . 8 (-g𝐷) = (-g𝐷)
5822, 57, 10, 46, 4lflsub 38539 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
5920, 25, 21, 44, 58syl112anc 1372 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
6022, 26, 39, 10, 42, 4lflmul 38540 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉)) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6120, 25, 41, 31, 60syl112anc 1372 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6226, 39ringass 20193 . . . . . . . . 9 ((𝐷 ∈ Ring ∧ ((𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷))) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
6324, 28, 38, 33, 62syl13anc 1370 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
64 eqid 2728 . . . . . . . . . . . 12 (1r𝐷) = (1r𝐷)
6526, 35, 39, 64, 36drnginvrl 20649 . . . . . . . . . . 11 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6630, 33, 34, 65syl3anc 1369 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6766oveq2d 7436 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = ((𝐺𝑢)(.r𝐷)(1r𝐷)))
6826, 39, 64ringridm 20206 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
6924, 28, 68syl2anc 583 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
7067, 69eqtrd 2768 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = (𝐺𝑢))
7161, 63, 703eqtrd 2772 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (𝐺𝑢))
7271oveq2d 7436 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺𝑢)))
7322lmodfgrp 20752 . . . . . . . 8 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
7420, 73syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Grp)
7526, 35, 57grpsubid 18980 . . . . . . 7 ((𝐷 ∈ Grp ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7674, 28, 75syl2anc 583 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7759, 72, 763eqtrd 2772 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )
7810, 22, 35, 4, 5ellkr 38561 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
7919, 25, 78syl2anc 583 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
8056, 77, 79mpbir2and 712 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺))
8110, 42, 22, 26, 11, 20, 41, 31lspsneli 20885 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
8245, 14lsmelvali 19605 . . . 4 ((((𝐾𝐺) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) ∧ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8352, 54, 80, 81, 82syl22anc 838 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8448, 83eqeltrrd 2830 . 2 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢 ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8518, 84eqelssd 4001 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wss 3947  {csn 4629  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  .rcmulr 17234  Scalarcsca 17236   ·𝑠 cvsca 17237  0gc0g 17421  Grpcgrp 18890  -gcsg 18892  SubGrpcsubg 19075  LSSumclsm 19589  1rcur 20121  Ringcrg 20173  invrcinvr 20326  DivRingcdr 20624  LModclmod 20743  LSubSpclss 20815  LSpanclspn 20855  LVecclvec 20987  LFnlclfn 38529  LKerclk 38557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-grp 18893  df-minusg 18894  df-sbg 18895  df-subg 19078  df-cntz 19268  df-lsm 19591  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-ur 20122  df-ring 20175  df-oppr 20273  df-dvdsr 20296  df-unit 20297  df-invr 20327  df-drng 20626  df-lmod 20745  df-lss 20816  df-lsp 20856  df-lvec 20988  df-lfl 38530  df-lkr 38558
This theorem is referenced by:  lkrlsp2  38575
  Copyright terms: Public domain W3C validator