Step | Hyp | Ref
| Expression |
1 | | lveclmod 20364 |
. . . . 5
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
2 | 1 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → 𝑊 ∈ LMod) |
3 | | simp2r 1199 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → 𝐺 ∈ 𝐹) |
4 | | lkrlsp.f |
. . . . . 6
⊢ 𝐹 = (LFnl‘𝑊) |
5 | | lkrlsp.k |
. . . . . 6
⊢ 𝐾 = (LKer‘𝑊) |
6 | | eqid 2740 |
. . . . . 6
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
7 | 4, 5, 6 | lkrlss 37103 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
8 | 2, 3, 7 | syl2anc 584 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
9 | | simp2l 1198 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → 𝑋 ∈ 𝑉) |
10 | | lkrlsp.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
11 | | lkrlsp.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑊) |
12 | 10, 6, 11 | lspsncl 20235 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
13 | 2, 9, 12 | syl2anc 584 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
14 | | lkrlsp.p |
. . . . 5
⊢ ⊕ =
(LSSum‘𝑊) |
15 | 6, 14 | lsmcl 20341 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐾‘𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊)) |
16 | 2, 8, 13, 15 | syl3anc 1370 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊)) |
17 | 10, 6 | lssss 20194 |
. . 3
⊢ (((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) ⊆ 𝑉) |
18 | 16, 17 | syl 17 |
. 2
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) ⊆ 𝑉) |
19 | | simpl1 1190 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝑊 ∈ LVec) |
20 | 19, 1 | syl 17 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝑊 ∈ LMod) |
21 | | simpr 485 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝑢 ∈ 𝑉) |
22 | | lkrlsp.d |
. . . . . . . 8
⊢ 𝐷 = (Scalar‘𝑊) |
23 | 22 | lmodring 20127 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
24 | 20, 23 | syl 17 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝐷 ∈ Ring) |
25 | | simpl2r 1226 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
26 | | eqid 2740 |
. . . . . . . 8
⊢
(Base‘𝐷) =
(Base‘𝐷) |
27 | 22, 26, 10, 4 | lflcl 37072 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑢 ∈ 𝑉) → (𝐺‘𝑢) ∈ (Base‘𝐷)) |
28 | 19, 25, 21, 27 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐺‘𝑢) ∈ (Base‘𝐷)) |
29 | 22 | lvecdrng 20363 |
. . . . . . . 8
⊢ (𝑊 ∈ LVec → 𝐷 ∈
DivRing) |
30 | 19, 29 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝐷 ∈ DivRing) |
31 | | simpl2l 1225 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
32 | 22, 26, 10, 4 | lflcl 37072 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
33 | 19, 25, 31, 32 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝐷)) |
34 | | simpl3 1192 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐺‘𝑋) ≠ 0 ) |
35 | | lkrlsp.o |
. . . . . . . 8
⊢ 0 =
(0g‘𝐷) |
36 | | eqid 2740 |
. . . . . . . 8
⊢
(invr‘𝐷) = (invr‘𝐷) |
37 | 26, 35, 36 | drnginvrcl 20004 |
. . . . . . 7
⊢ ((𝐷 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝐷) ∧ (𝐺‘𝑋) ≠ 0 ) →
((invr‘𝐷)‘(𝐺‘𝑋)) ∈ (Base‘𝐷)) |
38 | 30, 33, 34, 37 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((invr‘𝐷)‘(𝐺‘𝑋)) ∈ (Base‘𝐷)) |
39 | | eqid 2740 |
. . . . . . 7
⊢
(.r‘𝐷) = (.r‘𝐷) |
40 | 26, 39 | ringcl 19796 |
. . . . . 6
⊢ ((𝐷 ∈ Ring ∧ (𝐺‘𝑢) ∈ (Base‘𝐷) ∧ ((invr‘𝐷)‘(𝐺‘𝑋)) ∈ (Base‘𝐷)) → ((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋))) ∈ (Base‘𝐷)) |
41 | 24, 28, 38, 40 | syl3anc 1370 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋))) ∈ (Base‘𝐷)) |
42 | | eqid 2740 |
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
43 | 10, 22, 42, 26 | lmodvscl 20136 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ ((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋))) ∈ (Base‘𝐷) ∧ 𝑋 ∈ 𝑉) → (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋) ∈ 𝑉) |
44 | 20, 41, 31, 43 | syl3anc 1370 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋) ∈ 𝑉) |
45 | | eqid 2740 |
. . . . 5
⊢
(+g‘𝑊) = (+g‘𝑊) |
46 | | eqid 2740 |
. . . . 5
⊢
(-g‘𝑊) = (-g‘𝑊) |
47 | 10, 45, 46 | lmodvnpcan 20173 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋) ∈ 𝑉) → ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))(+g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) = 𝑢) |
48 | 20, 21, 44, 47 | syl3anc 1370 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))(+g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) = 𝑢) |
49 | 6 | lsssssubg 20216 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(LSubSp‘𝑊) ⊆
(SubGrp‘𝑊)) |
50 | 20, 49 | syl 17 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
51 | 8 | adantr 481 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
52 | 50, 51 | sseldd 3927 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐾‘𝐺) ∈ (SubGrp‘𝑊)) |
53 | 13 | adantr 481 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
54 | 50, 53 | sseldd 3927 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
55 | 10, 46 | lmodvsubcl 20164 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑢 ∈ 𝑉 ∧ (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋) ∈ 𝑉) → (𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ 𝑉) |
56 | 20, 21, 44, 55 | syl3anc 1370 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ 𝑉) |
57 | | eqid 2740 |
. . . . . . . 8
⊢
(-g‘𝐷) = (-g‘𝐷) |
58 | 22, 57, 10, 46, 4 | lflsub 37075 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑢 ∈ 𝑉 ∧ (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋) ∈ 𝑉)) → (𝐺‘(𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))) = ((𝐺‘𝑢)(-g‘𝐷)(𝐺‘(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)))) |
59 | 20, 25, 21, 44, 58 | syl112anc 1373 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐺‘(𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))) = ((𝐺‘𝑢)(-g‘𝐷)(𝐺‘(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)))) |
60 | 22, 26, 39, 10, 42, 4 | lflmul 37076 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋))) ∈ (Base‘𝐷) ∧ 𝑋 ∈ 𝑉)) → (𝐺‘(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) = (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))(.r‘𝐷)(𝐺‘𝑋))) |
61 | 20, 25, 41, 31, 60 | syl112anc 1373 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐺‘(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) = (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))(.r‘𝐷)(𝐺‘𝑋))) |
62 | 26, 39 | ringass 19799 |
. . . . . . . . 9
⊢ ((𝐷 ∈ Ring ∧ ((𝐺‘𝑢) ∈ (Base‘𝐷) ∧ ((invr‘𝐷)‘(𝐺‘𝑋)) ∈ (Base‘𝐷) ∧ (𝐺‘𝑋) ∈ (Base‘𝐷))) → (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))(.r‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑢)(.r‘𝐷)(((invr‘𝐷)‘(𝐺‘𝑋))(.r‘𝐷)(𝐺‘𝑋)))) |
63 | 24, 28, 38, 33, 62 | syl13anc 1371 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))(.r‘𝐷)(𝐺‘𝑋)) = ((𝐺‘𝑢)(.r‘𝐷)(((invr‘𝐷)‘(𝐺‘𝑋))(.r‘𝐷)(𝐺‘𝑋)))) |
64 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
(1r‘𝐷) = (1r‘𝐷) |
65 | 26, 35, 39, 64, 36 | drnginvrl 20006 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝐷) ∧ (𝐺‘𝑋) ≠ 0 ) →
(((invr‘𝐷)‘(𝐺‘𝑋))(.r‘𝐷)(𝐺‘𝑋)) = (1r‘𝐷)) |
66 | 30, 33, 34, 65 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (((invr‘𝐷)‘(𝐺‘𝑋))(.r‘𝐷)(𝐺‘𝑋)) = (1r‘𝐷)) |
67 | 66 | oveq2d 7285 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝐺‘𝑢)(.r‘𝐷)(((invr‘𝐷)‘(𝐺‘𝑋))(.r‘𝐷)(𝐺‘𝑋))) = ((𝐺‘𝑢)(.r‘𝐷)(1r‘𝐷))) |
68 | 26, 39, 64 | ringridm 19807 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ Ring ∧ (𝐺‘𝑢) ∈ (Base‘𝐷)) → ((𝐺‘𝑢)(.r‘𝐷)(1r‘𝐷)) = (𝐺‘𝑢)) |
69 | 24, 28, 68 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝐺‘𝑢)(.r‘𝐷)(1r‘𝐷)) = (𝐺‘𝑢)) |
70 | 67, 69 | eqtrd 2780 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝐺‘𝑢)(.r‘𝐷)(((invr‘𝐷)‘(𝐺‘𝑋))(.r‘𝐷)(𝐺‘𝑋))) = (𝐺‘𝑢)) |
71 | 61, 63, 70 | 3eqtrd 2784 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐺‘(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) = (𝐺‘𝑢)) |
72 | 71 | oveq2d 7285 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝐺‘𝑢)(-g‘𝐷)(𝐺‘(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))) = ((𝐺‘𝑢)(-g‘𝐷)(𝐺‘𝑢))) |
73 | 22 | lmodfgrp 20128 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Grp) |
74 | 20, 73 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝐷 ∈ Grp) |
75 | 26, 35, 57 | grpsubid 18655 |
. . . . . . 7
⊢ ((𝐷 ∈ Grp ∧ (𝐺‘𝑢) ∈ (Base‘𝐷)) → ((𝐺‘𝑢)(-g‘𝐷)(𝐺‘𝑢)) = 0 ) |
76 | 74, 28, 75 | syl2anc 584 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝐺‘𝑢)(-g‘𝐷)(𝐺‘𝑢)) = 0 ) |
77 | 59, 72, 76 | 3eqtrd 2784 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝐺‘(𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))) = 0 ) |
78 | 10, 22, 35, 4, 5 | ellkr 37097 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ (𝐾‘𝐺) ↔ ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))) = 0 ))) |
79 | 19, 25, 78 | syl2anc 584 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ (𝐾‘𝐺) ↔ ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))) = 0 ))) |
80 | 56, 77, 79 | mpbir2and 710 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ (𝐾‘𝐺)) |
81 | 10, 42, 22, 26, 11, 20, 41, 31 | lspsneli 20259 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋) ∈ (𝑁‘{𝑋})) |
82 | 45, 14 | lsmelvali 19251 |
. . . 4
⊢ ((((𝐾‘𝐺) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) ∧ ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ (𝐾‘𝐺) ∧ (((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋) ∈ (𝑁‘{𝑋}))) → ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))(+g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋}))) |
83 | 52, 54, 80, 81, 82 | syl22anc 836 |
. . 3
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → ((𝑢(-g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋))(+g‘𝑊)(((𝐺‘𝑢)(.r‘𝐷)((invr‘𝐷)‘(𝐺‘𝑋)))( ·𝑠
‘𝑊)𝑋)) ∈ ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋}))) |
84 | 48, 83 | eqeltrrd 2842 |
. 2
⊢ (((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) ∧ 𝑢 ∈ 𝑉) → 𝑢 ∈ ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋}))) |
85 | 18, 84 | eqelssd 3947 |
1
⊢ ((𝑊 ∈ LVec ∧ (𝑋 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐾‘𝐺) ⊕ (𝑁‘{𝑋})) = 𝑉) |