Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp Structured version   Visualization version   GIF version

Theorem lkrlsp 37110
Description: The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 37097) is the whole vector space. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
lkrlsp.d 𝐷 = (Scalar‘𝑊)
lkrlsp.o 0 = (0g𝐷)
lkrlsp.v 𝑉 = (Base‘𝑊)
lkrlsp.n 𝑁 = (LSpan‘𝑊)
lkrlsp.p = (LSSum‘𝑊)
lkrlsp.f 𝐹 = (LFnl‘𝑊)
lkrlsp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 20364 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1132 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑊 ∈ LMod)
3 simp2r 1199 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝐺𝐹)
4 lkrlsp.f . . . . . 6 𝐹 = (LFnl‘𝑊)
5 lkrlsp.k . . . . . 6 𝐾 = (LKer‘𝑊)
6 eqid 2740 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 37103 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp2l 1198 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑋𝑉)
10 lkrlsp.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lkrlsp.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 6, 11lspsncl 20235 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
132, 9, 12syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
14 lkrlsp.p . . . . 5 = (LSSum‘𝑊)
156, 14lsmcl 20341 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
162, 8, 13, 15syl3anc 1370 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
1710, 6lssss 20194 . . 3 (((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
1816, 17syl 17 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
19 simpl1 1190 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LVec)
2019, 1syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LMod)
21 simpr 485 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢𝑉)
22 lkrlsp.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
2322lmodring 20127 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2420, 23syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Ring)
25 simpl2r 1226 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐺𝐹)
26 eqid 2740 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
2722, 26, 10, 4lflcl 37072 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2819, 25, 21, 27syl3anc 1370 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2922lvecdrng 20363 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
3019, 29syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ DivRing)
31 simpl2l 1225 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑋𝑉)
3222, 26, 10, 4lflcl 37072 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
3319, 25, 31, 32syl3anc 1370 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
34 simpl3 1192 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ≠ 0 )
35 lkrlsp.o . . . . . . . 8 0 = (0g𝐷)
36 eqid 2740 . . . . . . . 8 (invr𝐷) = (invr𝐷)
3726, 35, 36drnginvrcl 20004 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
3830, 33, 34, 37syl3anc 1370 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
39 eqid 2740 . . . . . . 7 (.r𝐷) = (.r𝐷)
4026, 39ringcl 19796 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
4124, 28, 38, 40syl3anc 1370 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
42 eqid 2740 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4310, 22, 42, 26lmodvscl 20136 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
4420, 41, 31, 43syl3anc 1370 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
45 eqid 2740 . . . . 5 (+g𝑊) = (+g𝑊)
46 eqid 2740 . . . . 5 (-g𝑊) = (-g𝑊)
4710, 45, 46lmodvnpcan 20173 . . . 4 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
4820, 21, 44, 47syl3anc 1370 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
496lsssssubg 20216 . . . . . 6 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5020, 49syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
518adantr 481 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
5250, 51sseldd 3927 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (SubGrp‘𝑊))
5313adantr 481 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5450, 53sseldd 3927 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
5510, 46lmodvsubcl 20164 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
5620, 21, 44, 55syl3anc 1370 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
57 eqid 2740 . . . . . . . 8 (-g𝐷) = (-g𝐷)
5822, 57, 10, 46, 4lflsub 37075 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
5920, 25, 21, 44, 58syl112anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
6022, 26, 39, 10, 42, 4lflmul 37076 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉)) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6120, 25, 41, 31, 60syl112anc 1373 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6226, 39ringass 19799 . . . . . . . . 9 ((𝐷 ∈ Ring ∧ ((𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷))) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
6324, 28, 38, 33, 62syl13anc 1371 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
64 eqid 2740 . . . . . . . . . . . 12 (1r𝐷) = (1r𝐷)
6526, 35, 39, 64, 36drnginvrl 20006 . . . . . . . . . . 11 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6630, 33, 34, 65syl3anc 1370 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6766oveq2d 7285 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = ((𝐺𝑢)(.r𝐷)(1r𝐷)))
6826, 39, 64ringridm 19807 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
6924, 28, 68syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
7067, 69eqtrd 2780 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = (𝐺𝑢))
7161, 63, 703eqtrd 2784 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (𝐺𝑢))
7271oveq2d 7285 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺𝑢)))
7322lmodfgrp 20128 . . . . . . . 8 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
7420, 73syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Grp)
7526, 35, 57grpsubid 18655 . . . . . . 7 ((𝐷 ∈ Grp ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7674, 28, 75syl2anc 584 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7759, 72, 763eqtrd 2784 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )
7810, 22, 35, 4, 5ellkr 37097 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
7919, 25, 78syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
8056, 77, 79mpbir2and 710 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺))
8110, 42, 22, 26, 11, 20, 41, 31lspsneli 20259 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
8245, 14lsmelvali 19251 . . . 4 ((((𝐾𝐺) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) ∧ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8352, 54, 80, 81, 82syl22anc 836 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8448, 83eqeltrrd 2842 . 2 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢 ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8518, 84eqelssd 3947 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wss 3892  {csn 4567  cfv 6431  (class class class)co 7269  Basecbs 16908  +gcplusg 16958  .rcmulr 16959  Scalarcsca 16961   ·𝑠 cvsca 16962  0gc0g 17146  Grpcgrp 18573  -gcsg 18575  SubGrpcsubg 18745  LSSumclsm 19235  1rcur 19733  Ringcrg 19779  invrcinvr 19909  DivRingcdr 19987  LModclmod 20119  LSubSpclss 20189  LSpanclspn 20229  LVecclvec 20360  LFnlclfn 37065  LKerclk 37093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-tpos 8031  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-map 8598  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-grp 18576  df-minusg 18577  df-sbg 18578  df-subg 18748  df-cntz 18919  df-lsm 19237  df-cmn 19384  df-abl 19385  df-mgp 19717  df-ur 19734  df-ring 19781  df-oppr 19858  df-dvdsr 19879  df-unit 19880  df-invr 19910  df-drng 19989  df-lmod 20121  df-lss 20190  df-lsp 20230  df-lvec 20361  df-lfl 37066  df-lkr 37094
This theorem is referenced by:  lkrlsp2  37111
  Copyright terms: Public domain W3C validator