Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp Structured version   Visualization version   GIF version

Theorem lkrlsp 39095
Description: The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 39082) is the whole vector space. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
lkrlsp.d 𝐷 = (Scalar‘𝑊)
lkrlsp.o 0 = (0g𝐷)
lkrlsp.v 𝑉 = (Base‘𝑊)
lkrlsp.n 𝑁 = (LSpan‘𝑊)
lkrlsp.p = (LSSum‘𝑊)
lkrlsp.f 𝐹 = (LFnl‘𝑊)
lkrlsp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 21013 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑊 ∈ LMod)
3 simp2r 1201 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝐺𝐹)
4 lkrlsp.f . . . . . 6 𝐹 = (LFnl‘𝑊)
5 lkrlsp.k . . . . . 6 𝐾 = (LKer‘𝑊)
6 eqid 2729 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 39088 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp2l 1200 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑋𝑉)
10 lkrlsp.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lkrlsp.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 6, 11lspsncl 20883 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
132, 9, 12syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
14 lkrlsp.p . . . . 5 = (LSSum‘𝑊)
156, 14lsmcl 20990 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
162, 8, 13, 15syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
1710, 6lssss 20842 . . 3 (((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
1816, 17syl 17 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
19 simpl1 1192 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LVec)
2019, 1syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LMod)
21 simpr 484 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢𝑉)
22 lkrlsp.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
2322lmodring 20774 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2420, 23syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Ring)
25 simpl2r 1228 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐺𝐹)
26 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
2722, 26, 10, 4lflcl 39057 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2819, 25, 21, 27syl3anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2922lvecdrng 21012 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
3019, 29syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ DivRing)
31 simpl2l 1227 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑋𝑉)
3222, 26, 10, 4lflcl 39057 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
3319, 25, 31, 32syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
34 simpl3 1194 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ≠ 0 )
35 lkrlsp.o . . . . . . . 8 0 = (0g𝐷)
36 eqid 2729 . . . . . . . 8 (invr𝐷) = (invr𝐷)
3726, 35, 36drnginvrcl 20662 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
3830, 33, 34, 37syl3anc 1373 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
39 eqid 2729 . . . . . . 7 (.r𝐷) = (.r𝐷)
4026, 39ringcl 20159 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
4124, 28, 38, 40syl3anc 1373 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
42 eqid 2729 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4310, 22, 42, 26lmodvscl 20784 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
4420, 41, 31, 43syl3anc 1373 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
45 eqid 2729 . . . . 5 (+g𝑊) = (+g𝑊)
46 eqid 2729 . . . . 5 (-g𝑊) = (-g𝑊)
4710, 45, 46lmodvnpcan 20822 . . . 4 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
4820, 21, 44, 47syl3anc 1373 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
496lsssssubg 20864 . . . . . 6 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5020, 49syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
518adantr 480 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
5250, 51sseldd 3947 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (SubGrp‘𝑊))
5313adantr 480 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5450, 53sseldd 3947 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
5510, 46lmodvsubcl 20813 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
5620, 21, 44, 55syl3anc 1373 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
57 eqid 2729 . . . . . . . 8 (-g𝐷) = (-g𝐷)
5822, 57, 10, 46, 4lflsub 39060 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
5920, 25, 21, 44, 58syl112anc 1376 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
6022, 26, 39, 10, 42, 4lflmul 39061 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉)) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6120, 25, 41, 31, 60syl112anc 1376 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6226, 39ringass 20162 . . . . . . . . 9 ((𝐷 ∈ Ring ∧ ((𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷))) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
6324, 28, 38, 33, 62syl13anc 1374 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
64 eqid 2729 . . . . . . . . . . . 12 (1r𝐷) = (1r𝐷)
6526, 35, 39, 64, 36drnginvrl 20665 . . . . . . . . . . 11 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6630, 33, 34, 65syl3anc 1373 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6766oveq2d 7403 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = ((𝐺𝑢)(.r𝐷)(1r𝐷)))
6826, 39, 64ringridm 20179 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
6924, 28, 68syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
7067, 69eqtrd 2764 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = (𝐺𝑢))
7161, 63, 703eqtrd 2768 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (𝐺𝑢))
7271oveq2d 7403 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺𝑢)))
7322lmodfgrp 20775 . . . . . . . 8 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
7420, 73syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Grp)
7526, 35, 57grpsubid 18956 . . . . . . 7 ((𝐷 ∈ Grp ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7674, 28, 75syl2anc 584 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7759, 72, 763eqtrd 2768 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )
7810, 22, 35, 4, 5ellkr 39082 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
7919, 25, 78syl2anc 584 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
8056, 77, 79mpbir2and 713 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺))
8110, 42, 22, 26, 11, 20, 41, 31ellspsni 20907 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
8245, 14lsmelvali 19580 . . . 4 ((((𝐾𝐺) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) ∧ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8352, 54, 80, 81, 82syl22anc 838 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8448, 83eqeltrrd 2829 . 2 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢 ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8518, 84eqelssd 3968 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  SubGrpcsubg 19052  LSSumclsm 19564  1rcur 20090  Ringcrg 20142  invrcinvr 20296  DivRingcdr 20638  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LVecclvec 21009  LFnlclfn 39050  LKerclk 39078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lfl 39051  df-lkr 39079
This theorem is referenced by:  lkrlsp2  39096
  Copyright terms: Public domain W3C validator