Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrlsp Structured version   Visualization version   GIF version

Theorem lkrlsp 36253
Description: The subspace sum of a kernel and the span of a vector not in the kernel (by ellkr 36240) is the whole vector space. (Contributed by NM, 19-Apr-2014.)
Hypotheses
Ref Expression
lkrlsp.d 𝐷 = (Scalar‘𝑊)
lkrlsp.o 0 = (0g𝐷)
lkrlsp.v 𝑉 = (Base‘𝑊)
lkrlsp.n 𝑁 = (LSpan‘𝑊)
lkrlsp.p = (LSSum‘𝑊)
lkrlsp.f 𝐹 = (LFnl‘𝑊)
lkrlsp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrlsp ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)

Proof of Theorem lkrlsp
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 19878 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1129 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑊 ∈ LMod)
3 simp2r 1196 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝐺𝐹)
4 lkrlsp.f . . . . . 6 𝐹 = (LFnl‘𝑊)
5 lkrlsp.k . . . . . 6 𝐾 = (LKer‘𝑊)
6 eqid 2821 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 36246 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 586 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp2l 1195 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → 𝑋𝑉)
10 lkrlsp.v . . . . . 6 𝑉 = (Base‘𝑊)
11 lkrlsp.n . . . . . 6 𝑁 = (LSpan‘𝑊)
1210, 6, 11lspsncl 19749 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
132, 9, 12syl2anc 586 . . . 4 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
14 lkrlsp.p . . . . 5 = (LSSum‘𝑊)
156, 14lsmcl 19855 . . . 4 ((𝑊 ∈ LMod ∧ (𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
162, 8, 13, 15syl3anc 1367 . . 3 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
1710, 6lssss 19708 . . 3 (((𝐾𝐺) (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
1816, 17syl 17 . 2 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) ⊆ 𝑉)
19 simpl1 1187 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LVec)
2019, 1syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑊 ∈ LMod)
21 simpr 487 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢𝑉)
22 lkrlsp.d . . . . . . . 8 𝐷 = (Scalar‘𝑊)
2322lmodring 19642 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2420, 23syl 17 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Ring)
25 simpl2r 1223 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐺𝐹)
26 eqid 2821 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
2722, 26, 10, 4lflcl 36215 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2819, 25, 21, 27syl3anc 1367 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑢) ∈ (Base‘𝐷))
2922lvecdrng 19877 . . . . . . . 8 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
3019, 29syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ DivRing)
31 simpl2l 1222 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑋𝑉)
3222, 26, 10, 4lflcl 36215 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
3319, 25, 31, 32syl3anc 1367 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ∈ (Base‘𝐷))
34 simpl3 1189 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺𝑋) ≠ 0 )
35 lkrlsp.o . . . . . . . 8 0 = (0g𝐷)
36 eqid 2821 . . . . . . . 8 (invr𝐷) = (invr𝐷)
3726, 35, 36drnginvrcl 19519 . . . . . . 7 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
3830, 33, 34, 37syl3anc 1367 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷))
39 eqid 2821 . . . . . . 7 (.r𝐷) = (.r𝐷)
4026, 39ringcl 19311 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
4124, 28, 38, 40syl3anc 1367 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷))
42 eqid 2821 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4310, 22, 42, 26lmodvscl 19651 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
4420, 41, 31, 43syl3anc 1367 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)
45 eqid 2821 . . . . 5 (+g𝑊) = (+g𝑊)
46 eqid 2821 . . . . 5 (-g𝑊) = (-g𝑊)
4710, 45, 46lmodvnpcan 19688 . . . 4 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
4820, 21, 44, 47syl3anc 1367 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = 𝑢)
496lsssssubg 19730 . . . . . 6 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
5020, 49syl 17 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
518adantr 483 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
5250, 51sseldd 3968 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐾𝐺) ∈ (SubGrp‘𝑊))
5313adantr 483 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5450, 53sseldd 3968 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
5510, 46lmodvsubcl 19679 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
5620, 21, 44, 55syl3anc 1367 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉)
57 eqid 2821 . . . . . . . 8 (-g𝐷) = (-g𝐷)
5822, 57, 10, 46, 4lflsub 36218 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑢𝑉 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ 𝑉)) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
5920, 25, 21, 44, 58syl112anc 1370 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))))
6022, 26, 39, 10, 42, 4lflmul 36219 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋))) ∈ (Base‘𝐷) ∧ 𝑋𝑉)) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6120, 25, 41, 31, 60syl112anc 1370 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)))
6226, 39ringass 19314 . . . . . . . . 9 ((𝐷 ∈ Ring ∧ ((𝐺𝑢) ∈ (Base‘𝐷) ∧ ((invr𝐷)‘(𝐺𝑋)) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ∈ (Base‘𝐷))) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
6324, 28, 38, 33, 62syl13anc 1368 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))(.r𝐷)(𝐺𝑋)) = ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))))
64 eqid 2821 . . . . . . . . . . . 12 (1r𝐷) = (1r𝐷)
6526, 35, 39, 64, 36drnginvrl 19521 . . . . . . . . . . 11 ((𝐷 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝐷) ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6630, 33, 34, 65syl3anc 1367 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋)) = (1r𝐷))
6766oveq2d 7172 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = ((𝐺𝑢)(.r𝐷)(1r𝐷)))
6826, 39, 64ringridm 19322 . . . . . . . . . 10 ((𝐷 ∈ Ring ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
6924, 28, 68syl2anc 586 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(1r𝐷)) = (𝐺𝑢))
7067, 69eqtrd 2856 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(.r𝐷)(((invr𝐷)‘(𝐺𝑋))(.r𝐷)(𝐺𝑋))) = (𝐺𝑢))
7161, 63, 703eqtrd 2860 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) = (𝐺𝑢))
7271oveq2d 7172 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺‘(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = ((𝐺𝑢)(-g𝐷)(𝐺𝑢)))
7322lmodfgrp 19643 . . . . . . . 8 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
7420, 73syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝐷 ∈ Grp)
7526, 35, 57grpsubid 18183 . . . . . . 7 ((𝐷 ∈ Grp ∧ (𝐺𝑢) ∈ (Base‘𝐷)) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7674, 28, 75syl2anc 586 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝐺𝑢)(-g𝐷)(𝐺𝑢)) = 0 )
7759, 72, 763eqtrd 2860 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )
7810, 22, 35, 4, 5ellkr 36240 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
7919, 25, 78syl2anc 586 . . . . 5 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ↔ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ 𝑉 ∧ (𝐺‘(𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))) = 0 )))
8056, 77, 79mpbir2and 711 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺))
8110, 42, 22, 26, 11, 20, 41, 31lspsneli 19773 . . . 4 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
8245, 14lsmelvali 18775 . . . 4 ((((𝐾𝐺) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) ∧ ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ (𝐾𝐺) ∧ (((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8352, 54, 80, 81, 82syl22anc 836 . . 3 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → ((𝑢(-g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋))(+g𝑊)(((𝐺𝑢)(.r𝐷)((invr𝐷)‘(𝐺𝑋)))( ·𝑠𝑊)𝑋)) ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8448, 83eqeltrrd 2914 . 2 (((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) ∧ 𝑢𝑉) → 𝑢 ∈ ((𝐾𝐺) (𝑁‘{𝑋})))
8518, 84eqelssd 3988 1 ((𝑊 ∈ LVec ∧ (𝑋𝑉𝐺𝐹) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐾𝐺) (𝑁‘{𝑋})) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wss 3936  {csn 4567  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  Grpcgrp 18103  -gcsg 18105  SubGrpcsubg 18273  LSSumclsm 18759  1rcur 19251  Ringcrg 19297  invrcinvr 19421  DivRingcdr 19502  LModclmod 19634  LSubSpclss 19703  LSpanclspn 19743  LVecclvec 19874  LFnlclfn 36208  LKerclk 36236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-lfl 36209  df-lkr 36237
This theorem is referenced by:  lkrlsp2  36254
  Copyright terms: Public domain W3C validator