Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubval Structured version   Visualization version   GIF version

Theorem ldualvsubval 39113
Description: The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 39111? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubval.v 𝑉 = (Base‘𝑊)
ldualvsubval.r 𝑅 = (Scalar‘𝑊)
ldualvsubval.s 𝑆 = (-g𝑅)
ldualvsubval.f 𝐹 = (LFnl‘𝑊)
ldualvsubval.d 𝐷 = (LDual‘𝑊)
ldualvsubval.m = (-g𝐷)
ldualvsubval.w (𝜑𝑊 ∈ LMod)
ldualvsubval.g (𝜑𝐺𝐹)
ldualvsubval.h (𝜑𝐻𝐹)
ldualvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ldualvsubval (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))

Proof of Theorem ldualvsubval
StepHypRef Expression
1 ldualvsubval.d . . . . 5 𝐷 = (LDual‘𝑊)
2 ldualvsubval.w . . . . 5 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 39109 . . . 4 (𝜑𝐷 ∈ LMod)
4 ldualvsubval.f . . . . 5 𝐹 = (LFnl‘𝑊)
5 eqid 2740 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsubval.g . . . . 5 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 39083 . . . 4 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsubval.h . . . . 5 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 39083 . . . 4 (𝜑𝐻 ∈ (Base‘𝐷))
10 eqid 2740 . . . . 5 (+g𝐷) = (+g𝐷)
11 ldualvsubval.m . . . . 5 = (-g𝐷)
12 eqid 2740 . . . . 5 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2740 . . . . 5 ( ·𝑠𝐷) = ( ·𝑠𝐷)
14 eqid 2740 . . . . 5 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2740 . . . . 5 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 20937 . . . 4 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
173, 7, 9, 16syl3anc 1371 . . 3 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
1817fveq1d 6922 . 2 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋))
19 ldualvsubval.v . . 3 𝑉 = (Base‘𝑊)
20 ldualvsubval.r . . 3 𝑅 = (Scalar‘𝑊)
21 eqid 2740 . . 3 (+g𝑅) = (+g𝑅)
22 eqid 2740 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2312lmodfgrp 20889 . . . . . . 7 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Grp)
243, 23syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐷) ∈ Grp)
2512lmodring 20888 . . . . . . . 8 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Ring)
263, 25syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐷) ∈ Ring)
27 eqid 2740 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
2827, 15ringidcl 20289 . . . . . . 7 ((Scalar‘𝐷) ∈ Ring → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
2926, 28syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
3027, 14grpinvcl 19027 . . . . . 6 (((Scalar‘𝐷) ∈ Grp ∧ (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3124, 29, 30syl2anc 583 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3220, 22, 1, 12, 27, 2ldualsbase 39089 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘𝑅))
3331, 32eleqtrd 2846 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘𝑅))
344, 20, 22, 1, 13, 2, 33, 8ldualvscl 39095 . . 3 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
35 ldualvsubval.x . . 3 (𝜑𝑋𝑉)
3619, 20, 21, 4, 1, 10, 2, 6, 34, 35ldualvaddval 39087 . 2 (𝜑 → ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋) = ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)))
37 eqid 2740 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
3820, 37, 1, 12, 14, 2ldualneg 39105 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg𝑅))
39 eqid 2740 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4020, 39, 1, 12, 15, 2ldual1 39104 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r𝑅))
4138, 40fveq12d 6927 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) = ((invg𝑅)‘(1r𝑅)))
4241oveq1d 7463 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻))
4342fveq1d 6922 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋))
44 eqid 2740 . . . . . 6 (.r𝑅) = (.r𝑅)
4520lmodring 20888 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
462, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 20265 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4920, 22, 39lmod1cl 20909 . . . . . . . 8 (𝑊 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
502, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5122, 37grpinvcl 19027 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 583 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
534, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35ldualvsval 39094 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋) = ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
5420, 22, 19, 4lflcl 39020 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑋𝑉) → (𝐻𝑋) ∈ (Base‘𝑅))
552, 8, 35, 54syl3anc 1371 . . . . . 6 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑅))
5622, 44, 39, 37, 46, 55ringnegr 20326 . . . . 5 (𝜑 → ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐻𝑋)))
5743, 53, 563eqtrd 2784 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((invg𝑅)‘(𝐻𝑋)))
5857oveq2d 7464 . . 3 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
5920, 22, 19, 4lflcl 39020 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑅))
602, 6, 35, 59syl3anc 1371 . . . 4 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
61 ldualvsubval.s . . . . 5 𝑆 = (-g𝑅)
6222, 21, 37, 61grpsubval 19025 . . . 4 (((𝐺𝑋) ∈ (Base‘𝑅) ∧ (𝐻𝑋) ∈ (Base‘𝑅)) → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6360, 55, 62syl2anc 583 . . 3 (𝜑 → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6458, 63eqtr4d 2783 . 2 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)𝑆(𝐻𝑋)))
6518, 36, 643eqtrd 2784 1 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  1rcur 20208  Ringcrg 20260  LModclmod 20880  LFnlclfn 39013  LDualcld 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-lmod 20882  df-lfl 39014  df-ldual 39080
This theorem is referenced by:  lcfrlem1  41499
  Copyright terms: Public domain W3C validator