Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubval Structured version   Visualization version   GIF version

Theorem ldualvsubval 36452
Description: The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 36450? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubval.v 𝑉 = (Base‘𝑊)
ldualvsubval.r 𝑅 = (Scalar‘𝑊)
ldualvsubval.s 𝑆 = (-g𝑅)
ldualvsubval.f 𝐹 = (LFnl‘𝑊)
ldualvsubval.d 𝐷 = (LDual‘𝑊)
ldualvsubval.m = (-g𝐷)
ldualvsubval.w (𝜑𝑊 ∈ LMod)
ldualvsubval.g (𝜑𝐺𝐹)
ldualvsubval.h (𝜑𝐻𝐹)
ldualvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ldualvsubval (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))

Proof of Theorem ldualvsubval
StepHypRef Expression
1 ldualvsubval.d . . . . 5 𝐷 = (LDual‘𝑊)
2 ldualvsubval.w . . . . 5 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 36448 . . . 4 (𝜑𝐷 ∈ LMod)
4 ldualvsubval.f . . . . 5 𝐹 = (LFnl‘𝑊)
5 eqid 2801 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsubval.g . . . . 5 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 36422 . . . 4 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsubval.h . . . . 5 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 36422 . . . 4 (𝜑𝐻 ∈ (Base‘𝐷))
10 eqid 2801 . . . . 5 (+g𝐷) = (+g𝐷)
11 ldualvsubval.m . . . . 5 = (-g𝐷)
12 eqid 2801 . . . . 5 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2801 . . . . 5 ( ·𝑠𝐷) = ( ·𝑠𝐷)
14 eqid 2801 . . . . 5 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2801 . . . . 5 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 19686 . . . 4 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
173, 7, 9, 16syl3anc 1368 . . 3 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
1817fveq1d 6651 . 2 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋))
19 ldualvsubval.v . . 3 𝑉 = (Base‘𝑊)
20 ldualvsubval.r . . 3 𝑅 = (Scalar‘𝑊)
21 eqid 2801 . . 3 (+g𝑅) = (+g𝑅)
22 eqid 2801 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2312lmodfgrp 19640 . . . . . . 7 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Grp)
243, 23syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐷) ∈ Grp)
2512lmodring 19639 . . . . . . . 8 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Ring)
263, 25syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐷) ∈ Ring)
27 eqid 2801 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
2827, 15ringidcl 19318 . . . . . . 7 ((Scalar‘𝐷) ∈ Ring → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
2926, 28syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
3027, 14grpinvcl 18147 . . . . . 6 (((Scalar‘𝐷) ∈ Grp ∧ (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3124, 29, 30syl2anc 587 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3220, 22, 1, 12, 27, 2ldualsbase 36428 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘𝑅))
3331, 32eleqtrd 2895 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘𝑅))
344, 20, 22, 1, 13, 2, 33, 8ldualvscl 36434 . . 3 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
35 ldualvsubval.x . . 3 (𝜑𝑋𝑉)
3619, 20, 21, 4, 1, 10, 2, 6, 34, 35ldualvaddval 36426 . 2 (𝜑 → ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋) = ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)))
37 eqid 2801 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
3820, 37, 1, 12, 14, 2ldualneg 36444 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg𝑅))
39 eqid 2801 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4020, 39, 1, 12, 15, 2ldual1 36443 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r𝑅))
4138, 40fveq12d 6656 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) = ((invg𝑅)‘(1r𝑅)))
4241oveq1d 7154 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻))
4342fveq1d 6651 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋))
44 eqid 2801 . . . . . 6 (.r𝑅) = (.r𝑅)
4520lmodring 19639 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
462, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 19299 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4920, 22, 39lmod1cl 19658 . . . . . . . 8 (𝑊 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
502, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5122, 37grpinvcl 18147 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 587 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
534, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35ldualvsval 36433 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋) = ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
5420, 22, 19, 4lflcl 36359 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑋𝑉) → (𝐻𝑋) ∈ (Base‘𝑅))
552, 8, 35, 54syl3anc 1368 . . . . . 6 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑅))
5622, 44, 39, 37, 46, 55rngnegr 19345 . . . . 5 (𝜑 → ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐻𝑋)))
5743, 53, 563eqtrd 2840 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((invg𝑅)‘(𝐻𝑋)))
5857oveq2d 7155 . . 3 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
5920, 22, 19, 4lflcl 36359 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑅))
602, 6, 35, 59syl3anc 1368 . . . 4 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
61 ldualvsubval.s . . . . 5 𝑆 = (-g𝑅)
6222, 21, 37, 61grpsubval 18145 . . . 4 (((𝐺𝑋) ∈ (Base‘𝑅) ∧ (𝐻𝑋) ∈ (Base‘𝑅)) → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6360, 55, 62syl2anc 587 . . 3 (𝜑 → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6458, 63eqtr4d 2839 . 2 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)𝑆(𝐻𝑋)))
6518, 36, 643eqtrd 2840 1 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  cfv 6328  (class class class)co 7139  Basecbs 16479  +gcplusg 16561  .rcmulr 16562  Scalarcsca 16564   ·𝑠 cvsca 16565  Grpcgrp 18099  invgcminusg 18100  -gcsg 18101  1rcur 19248  Ringcrg 19294  LModclmod 19631  LFnlclfn 36352  LDualcld 36418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-lmod 19633  df-lfl 36353  df-ldual 36419
This theorem is referenced by:  lcfrlem1  38837
  Copyright terms: Public domain W3C validator