Proof of Theorem ldualvsubval
Step | Hyp | Ref
| Expression |
1 | | ldualvsubval.d |
. . . . 5
⊢ 𝐷 = (LDual‘𝑊) |
2 | | ldualvsubval.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LMod) |
3 | 1, 2 | lduallmod 37167 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ LMod) |
4 | | ldualvsubval.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑊) |
5 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
6 | | ldualvsubval.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
7 | 4, 1, 5, 2, 6 | ldualelvbase 37141 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
8 | | ldualvsubval.h |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
9 | 4, 1, 5, 2, 8 | ldualelvbase 37141 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
10 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐷) = (+g‘𝐷) |
11 | | ldualvsubval.m |
. . . . 5
⊢ − =
(-g‘𝐷) |
12 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝐷) =
(Scalar‘𝐷) |
13 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝐷) = ( ·𝑠
‘𝐷) |
14 | | eqid 2738 |
. . . . 5
⊢
(invg‘(Scalar‘𝐷)) =
(invg‘(Scalar‘𝐷)) |
15 | | eqid 2738 |
. . . . 5
⊢
(1r‘(Scalar‘𝐷)) =
(1r‘(Scalar‘𝐷)) |
16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20178 |
. . . 4
⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 − 𝐻) = (𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))) |
17 | 3, 7, 9, 16 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))) |
18 | 17 | fveq1d 6776 |
. 2
⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))‘𝑋)) |
19 | | ldualvsubval.v |
. . 3
⊢ 𝑉 = (Base‘𝑊) |
20 | | ldualvsubval.r |
. . 3
⊢ 𝑅 = (Scalar‘𝑊) |
21 | | eqid 2738 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
22 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
23 | 12 | lmodfgrp 20132 |
. . . . . . 7
⊢ (𝐷 ∈ LMod →
(Scalar‘𝐷) ∈
Grp) |
24 | 3, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Scalar‘𝐷) ∈ Grp) |
25 | 12 | lmodring 20131 |
. . . . . . . 8
⊢ (𝐷 ∈ LMod →
(Scalar‘𝐷) ∈
Ring) |
26 | 3, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (Scalar‘𝐷) ∈ Ring) |
27 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) |
28 | 27, 15 | ringidcl 19807 |
. . . . . . 7
⊢
((Scalar‘𝐷)
∈ Ring → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) |
29 | 26, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) |
30 | 27, 14 | grpinvcl 18627 |
. . . . . 6
⊢
(((Scalar‘𝐷)
∈ Grp ∧ (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈
(Base‘(Scalar‘𝐷))) |
31 | 24, 29, 30 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈
(Base‘(Scalar‘𝐷))) |
32 | 20, 22, 1, 12, 27, 2 | ldualsbase 37147 |
. . . . 5
⊢ (𝜑 →
(Base‘(Scalar‘𝐷)) = (Base‘𝑅)) |
33 | 31, 32 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘𝑅)) |
34 | 4, 20, 22, 1, 13, 2, 33, 8 | ldualvscl 37153 |
. . 3
⊢ (𝜑 →
(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻) ∈ 𝐹) |
35 | | ldualvsubval.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
36 | 19, 20, 21, 4, 1, 10, 2, 6, 34, 35 | ldualvaddval 37145 |
. 2
⊢ (𝜑 → ((𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))‘𝑋) = ((𝐺‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋))) |
37 | | eqid 2738 |
. . . . . . . . 9
⊢
(invg‘𝑅) = (invg‘𝑅) |
38 | 20, 37, 1, 12, 14, 2 | ldualneg 37163 |
. . . . . . . 8
⊢ (𝜑 →
(invg‘(Scalar‘𝐷)) = (invg‘𝑅)) |
39 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
40 | 20, 39, 1, 12, 15, 2 | ldual1 37162 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(Scalar‘𝐷)) = (1r‘𝑅)) |
41 | 38, 40 | fveq12d 6781 |
. . . . . . 7
⊢ (𝜑 →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) = ((invg‘𝑅)‘(1r‘𝑅))) |
42 | 41 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 →
(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻) = (((invg‘𝑅)‘(1r‘𝑅))( ·𝑠
‘𝐷)𝐻)) |
43 | 42 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 →
((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋) = ((((invg‘𝑅)‘(1r‘𝑅))( ·𝑠
‘𝐷)𝐻)‘𝑋)) |
44 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
45 | 20 | lmodring 20131 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
46 | 2, 45 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
47 | | ringgrp 19788 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
49 | 20, 22, 39 | lmod1cl 20150 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod →
(1r‘𝑅)
∈ (Base‘𝑅)) |
50 | 2, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
51 | 22, 37 | grpinvcl 18627 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) |
52 | 48, 50, 51 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) |
53 | 4, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35 | ldualvsval 37152 |
. . . . 5
⊢ (𝜑 →
((((invg‘𝑅)‘(1r‘𝑅))(
·𝑠 ‘𝐷)𝐻)‘𝑋) = ((𝐻‘𝑋)(.r‘𝑅)((invg‘𝑅)‘(1r‘𝑅)))) |
54 | 20, 22, 19, 4 | lflcl 37078 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) ∈ (Base‘𝑅)) |
55 | 2, 8, 35, 54 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐻‘𝑋) ∈ (Base‘𝑅)) |
56 | 22, 44, 39, 37, 46, 55 | rngnegr 19834 |
. . . . 5
⊢ (𝜑 → ((𝐻‘𝑋)(.r‘𝑅)((invg‘𝑅)‘(1r‘𝑅))) =
((invg‘𝑅)‘(𝐻‘𝑋))) |
57 | 43, 53, 56 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 →
((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋) = ((invg‘𝑅)‘(𝐻‘𝑋))) |
58 | 57 | oveq2d 7291 |
. . 3
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋)) = ((𝐺‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐻‘𝑋)))) |
59 | 20, 22, 19, 4 | lflcl 37078 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑅)) |
60 | 2, 6, 35, 59 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑅)) |
61 | | ldualvsubval.s |
. . . . 5
⊢ 𝑆 = (-g‘𝑅) |
62 | 22, 21, 37, 61 | grpsubval 18625 |
. . . 4
⊢ (((𝐺‘𝑋) ∈ (Base‘𝑅) ∧ (𝐻‘𝑋) ∈ (Base‘𝑅)) → ((𝐺‘𝑋)𝑆(𝐻‘𝑋)) = ((𝐺‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐻‘𝑋)))) |
63 | 60, 55, 62 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝐺‘𝑋)𝑆(𝐻‘𝑋)) = ((𝐺‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐻‘𝑋)))) |
64 | 58, 63 | eqtr4d 2781 |
. 2
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋)) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) |
65 | 18, 36, 64 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) |