Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubval Structured version   Visualization version   GIF version

Theorem ldualvsubval 39139
Description: The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 39137? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubval.v 𝑉 = (Base‘𝑊)
ldualvsubval.r 𝑅 = (Scalar‘𝑊)
ldualvsubval.s 𝑆 = (-g𝑅)
ldualvsubval.f 𝐹 = (LFnl‘𝑊)
ldualvsubval.d 𝐷 = (LDual‘𝑊)
ldualvsubval.m = (-g𝐷)
ldualvsubval.w (𝜑𝑊 ∈ LMod)
ldualvsubval.g (𝜑𝐺𝐹)
ldualvsubval.h (𝜑𝐻𝐹)
ldualvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ldualvsubval (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))

Proof of Theorem ldualvsubval
StepHypRef Expression
1 ldualvsubval.d . . . . 5 𝐷 = (LDual‘𝑊)
2 ldualvsubval.w . . . . 5 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 39135 . . . 4 (𝜑𝐷 ∈ LMod)
4 ldualvsubval.f . . . . 5 𝐹 = (LFnl‘𝑊)
5 eqid 2735 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsubval.g . . . . 5 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 39109 . . . 4 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsubval.h . . . . 5 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 39109 . . . 4 (𝜑𝐻 ∈ (Base‘𝐷))
10 eqid 2735 . . . . 5 (+g𝐷) = (+g𝐷)
11 ldualvsubval.m . . . . 5 = (-g𝐷)
12 eqid 2735 . . . . 5 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2735 . . . . 5 ( ·𝑠𝐷) = ( ·𝑠𝐷)
14 eqid 2735 . . . . 5 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2735 . . . . 5 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 20932 . . . 4 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
173, 7, 9, 16syl3anc 1370 . . 3 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
1817fveq1d 6909 . 2 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋))
19 ldualvsubval.v . . 3 𝑉 = (Base‘𝑊)
20 ldualvsubval.r . . 3 𝑅 = (Scalar‘𝑊)
21 eqid 2735 . . 3 (+g𝑅) = (+g𝑅)
22 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2312lmodfgrp 20884 . . . . . . 7 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Grp)
243, 23syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐷) ∈ Grp)
2512lmodring 20883 . . . . . . . 8 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Ring)
263, 25syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐷) ∈ Ring)
27 eqid 2735 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
2827, 15ringidcl 20280 . . . . . . 7 ((Scalar‘𝐷) ∈ Ring → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
2926, 28syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
3027, 14grpinvcl 19018 . . . . . 6 (((Scalar‘𝐷) ∈ Grp ∧ (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3124, 29, 30syl2anc 584 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3220, 22, 1, 12, 27, 2ldualsbase 39115 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘𝑅))
3331, 32eleqtrd 2841 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘𝑅))
344, 20, 22, 1, 13, 2, 33, 8ldualvscl 39121 . . 3 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
35 ldualvsubval.x . . 3 (𝜑𝑋𝑉)
3619, 20, 21, 4, 1, 10, 2, 6, 34, 35ldualvaddval 39113 . 2 (𝜑 → ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋) = ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)))
37 eqid 2735 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
3820, 37, 1, 12, 14, 2ldualneg 39131 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg𝑅))
39 eqid 2735 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4020, 39, 1, 12, 15, 2ldual1 39130 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r𝑅))
4138, 40fveq12d 6914 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) = ((invg𝑅)‘(1r𝑅)))
4241oveq1d 7446 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻))
4342fveq1d 6909 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋))
44 eqid 2735 . . . . . 6 (.r𝑅) = (.r𝑅)
4520lmodring 20883 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
462, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 20256 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4920, 22, 39lmod1cl 20904 . . . . . . . 8 (𝑊 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
502, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5122, 37grpinvcl 19018 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
534, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35ldualvsval 39120 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋) = ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
5420, 22, 19, 4lflcl 39046 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑋𝑉) → (𝐻𝑋) ∈ (Base‘𝑅))
552, 8, 35, 54syl3anc 1370 . . . . . 6 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑅))
5622, 44, 39, 37, 46, 55ringnegr 20317 . . . . 5 (𝜑 → ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐻𝑋)))
5743, 53, 563eqtrd 2779 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((invg𝑅)‘(𝐻𝑋)))
5857oveq2d 7447 . . 3 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
5920, 22, 19, 4lflcl 39046 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑅))
602, 6, 35, 59syl3anc 1370 . . . 4 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
61 ldualvsubval.s . . . . 5 𝑆 = (-g𝑅)
6222, 21, 37, 61grpsubval 19016 . . . 4 (((𝐺𝑋) ∈ (Base‘𝑅) ∧ (𝐻𝑋) ∈ (Base‘𝑅)) → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6360, 55, 62syl2anc 584 . . 3 (𝜑 → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6458, 63eqtr4d 2778 . 2 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)𝑆(𝐻𝑋)))
6518, 36, 643eqtrd 2779 1 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  Grpcgrp 18964  invgcminusg 18965  -gcsg 18966  1rcur 20199  Ringcrg 20251  LModclmod 20875  LFnlclfn 39039  LDualcld 39105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-lmod 20877  df-lfl 39040  df-ldual 39106
This theorem is referenced by:  lcfrlem1  41525
  Copyright terms: Public domain W3C validator