Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubval Structured version   Visualization version   GIF version

Theorem ldualvsubval 37171
Description: The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 37169? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubval.v 𝑉 = (Base‘𝑊)
ldualvsubval.r 𝑅 = (Scalar‘𝑊)
ldualvsubval.s 𝑆 = (-g𝑅)
ldualvsubval.f 𝐹 = (LFnl‘𝑊)
ldualvsubval.d 𝐷 = (LDual‘𝑊)
ldualvsubval.m = (-g𝐷)
ldualvsubval.w (𝜑𝑊 ∈ LMod)
ldualvsubval.g (𝜑𝐺𝐹)
ldualvsubval.h (𝜑𝐻𝐹)
ldualvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ldualvsubval (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))

Proof of Theorem ldualvsubval
StepHypRef Expression
1 ldualvsubval.d . . . . 5 𝐷 = (LDual‘𝑊)
2 ldualvsubval.w . . . . 5 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 37167 . . . 4 (𝜑𝐷 ∈ LMod)
4 ldualvsubval.f . . . . 5 𝐹 = (LFnl‘𝑊)
5 eqid 2738 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsubval.g . . . . 5 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 37141 . . . 4 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsubval.h . . . . 5 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 37141 . . . 4 (𝜑𝐻 ∈ (Base‘𝐷))
10 eqid 2738 . . . . 5 (+g𝐷) = (+g𝐷)
11 ldualvsubval.m . . . . 5 = (-g𝐷)
12 eqid 2738 . . . . 5 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2738 . . . . 5 ( ·𝑠𝐷) = ( ·𝑠𝐷)
14 eqid 2738 . . . . 5 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2738 . . . . 5 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 20178 . . . 4 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
173, 7, 9, 16syl3anc 1370 . . 3 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
1817fveq1d 6776 . 2 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋))
19 ldualvsubval.v . . 3 𝑉 = (Base‘𝑊)
20 ldualvsubval.r . . 3 𝑅 = (Scalar‘𝑊)
21 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
22 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2312lmodfgrp 20132 . . . . . . 7 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Grp)
243, 23syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐷) ∈ Grp)
2512lmodring 20131 . . . . . . . 8 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Ring)
263, 25syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐷) ∈ Ring)
27 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
2827, 15ringidcl 19807 . . . . . . 7 ((Scalar‘𝐷) ∈ Ring → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
2926, 28syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
3027, 14grpinvcl 18627 . . . . . 6 (((Scalar‘𝐷) ∈ Grp ∧ (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3124, 29, 30syl2anc 584 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3220, 22, 1, 12, 27, 2ldualsbase 37147 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘𝑅))
3331, 32eleqtrd 2841 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘𝑅))
344, 20, 22, 1, 13, 2, 33, 8ldualvscl 37153 . . 3 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
35 ldualvsubval.x . . 3 (𝜑𝑋𝑉)
3619, 20, 21, 4, 1, 10, 2, 6, 34, 35ldualvaddval 37145 . 2 (𝜑 → ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋) = ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)))
37 eqid 2738 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
3820, 37, 1, 12, 14, 2ldualneg 37163 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg𝑅))
39 eqid 2738 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4020, 39, 1, 12, 15, 2ldual1 37162 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r𝑅))
4138, 40fveq12d 6781 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) = ((invg𝑅)‘(1r𝑅)))
4241oveq1d 7290 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻))
4342fveq1d 6776 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋))
44 eqid 2738 . . . . . 6 (.r𝑅) = (.r𝑅)
4520lmodring 20131 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
462, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 19788 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4920, 22, 39lmod1cl 20150 . . . . . . . 8 (𝑊 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
502, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5122, 37grpinvcl 18627 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
534, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35ldualvsval 37152 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋) = ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
5420, 22, 19, 4lflcl 37078 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑋𝑉) → (𝐻𝑋) ∈ (Base‘𝑅))
552, 8, 35, 54syl3anc 1370 . . . . . 6 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑅))
5622, 44, 39, 37, 46, 55rngnegr 19834 . . . . 5 (𝜑 → ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐻𝑋)))
5743, 53, 563eqtrd 2782 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((invg𝑅)‘(𝐻𝑋)))
5857oveq2d 7291 . . 3 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
5920, 22, 19, 4lflcl 37078 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑅))
602, 6, 35, 59syl3anc 1370 . . . 4 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
61 ldualvsubval.s . . . . 5 𝑆 = (-g𝑅)
6222, 21, 37, 61grpsubval 18625 . . . 4 (((𝐺𝑋) ∈ (Base‘𝑅) ∧ (𝐻𝑋) ∈ (Base‘𝑅)) → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6360, 55, 62syl2anc 584 . . 3 (𝜑 → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6458, 63eqtr4d 2781 . 2 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)𝑆(𝐻𝑋)))
6518, 36, 643eqtrd 2782 1 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579  1rcur 19737  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071  LDualcld 37137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-lmod 20125  df-lfl 37072  df-ldual 37138
This theorem is referenced by:  lcfrlem1  39556
  Copyright terms: Public domain W3C validator