Proof of Theorem ldualvsubval
| Step | Hyp | Ref
| Expression |
| 1 | | ldualvsubval.d |
. . . . 5
⊢ 𝐷 = (LDual‘𝑊) |
| 2 | | ldualvsubval.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LMod) |
| 3 | 1, 2 | lduallmod 39176 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ LMod) |
| 4 | | ldualvsubval.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑊) |
| 5 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 6 | | ldualvsubval.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 7 | 4, 1, 5, 2, 6 | ldualelvbase 39150 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (Base‘𝐷)) |
| 8 | | ldualvsubval.h |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| 9 | 4, 1, 5, 2, 8 | ldualelvbase 39150 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (Base‘𝐷)) |
| 10 | | eqid 2736 |
. . . . 5
⊢
(+g‘𝐷) = (+g‘𝐷) |
| 11 | | ldualvsubval.m |
. . . . 5
⊢ − =
(-g‘𝐷) |
| 12 | | eqid 2736 |
. . . . 5
⊢
(Scalar‘𝐷) =
(Scalar‘𝐷) |
| 13 | | eqid 2736 |
. . . . 5
⊢ (
·𝑠 ‘𝐷) = ( ·𝑠
‘𝐷) |
| 14 | | eqid 2736 |
. . . . 5
⊢
(invg‘(Scalar‘𝐷)) =
(invg‘(Scalar‘𝐷)) |
| 15 | | eqid 2736 |
. . . . 5
⊢
(1r‘(Scalar‘𝐷)) =
(1r‘(Scalar‘𝐷)) |
| 16 | 5, 10, 11, 12, 13, 14, 15 | lmodvsubval2 20879 |
. . . 4
⊢ ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 − 𝐻) = (𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))) |
| 17 | 3, 7, 9, 16 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))) |
| 18 | 17 | fveq1d 6883 |
. 2
⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))‘𝑋)) |
| 19 | | ldualvsubval.v |
. . 3
⊢ 𝑉 = (Base‘𝑊) |
| 20 | | ldualvsubval.r |
. . 3
⊢ 𝑅 = (Scalar‘𝑊) |
| 21 | | eqid 2736 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 22 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 23 | 12 | lmodfgrp 20831 |
. . . . . . 7
⊢ (𝐷 ∈ LMod →
(Scalar‘𝐷) ∈
Grp) |
| 24 | 3, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Scalar‘𝐷) ∈ Grp) |
| 25 | 12 | lmodring 20830 |
. . . . . . . 8
⊢ (𝐷 ∈ LMod →
(Scalar‘𝐷) ∈
Ring) |
| 26 | 3, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (Scalar‘𝐷) ∈ Ring) |
| 27 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) |
| 28 | 27, 15 | ringidcl 20230 |
. . . . . . 7
⊢
((Scalar‘𝐷)
∈ Ring → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) |
| 29 | 26, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) |
| 30 | 27, 14 | grpinvcl 18975 |
. . . . . 6
⊢
(((Scalar‘𝐷)
∈ Grp ∧ (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈
(Base‘(Scalar‘𝐷))) |
| 31 | 24, 29, 30 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈
(Base‘(Scalar‘𝐷))) |
| 32 | 20, 22, 1, 12, 27, 2 | ldualsbase 39156 |
. . . . 5
⊢ (𝜑 →
(Base‘(Scalar‘𝐷)) = (Base‘𝑅)) |
| 33 | 31, 32 | eleqtrd 2837 |
. . . 4
⊢ (𝜑 →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘𝑅)) |
| 34 | 4, 20, 22, 1, 13, 2, 33, 8 | ldualvscl 39162 |
. . 3
⊢ (𝜑 →
(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻) ∈ 𝐹) |
| 35 | | ldualvsubval.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 36 | 19, 20, 21, 4, 1, 10, 2, 6, 34, 35 | ldualvaddval 39154 |
. 2
⊢ (𝜑 → ((𝐺(+g‘𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻))‘𝑋) = ((𝐺‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋))) |
| 37 | | eqid 2736 |
. . . . . . . . 9
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 38 | 20, 37, 1, 12, 14, 2 | ldualneg 39172 |
. . . . . . . 8
⊢ (𝜑 →
(invg‘(Scalar‘𝐷)) = (invg‘𝑅)) |
| 39 | | eqid 2736 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 40 | 20, 39, 1, 12, 15, 2 | ldual1 39171 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(Scalar‘𝐷)) = (1r‘𝑅)) |
| 41 | 38, 40 | fveq12d 6888 |
. . . . . . 7
⊢ (𝜑 →
((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) = ((invg‘𝑅)‘(1r‘𝑅))) |
| 42 | 41 | oveq1d 7425 |
. . . . . 6
⊢ (𝜑 →
(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻) = (((invg‘𝑅)‘(1r‘𝑅))( ·𝑠
‘𝐷)𝐻)) |
| 43 | 42 | fveq1d 6883 |
. . . . 5
⊢ (𝜑 →
((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋) = ((((invg‘𝑅)‘(1r‘𝑅))( ·𝑠
‘𝐷)𝐻)‘𝑋)) |
| 44 | | eqid 2736 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 45 | 20 | lmodring 20830 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 46 | 2, 45 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 47 | | ringgrp 20203 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 49 | 20, 22, 39 | lmod1cl 20851 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 50 | 2, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 51 | 22, 37 | grpinvcl 18975 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) |
| 52 | 48, 50, 51 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) |
| 53 | 4, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35 | ldualvsval 39161 |
. . . . 5
⊢ (𝜑 →
((((invg‘𝑅)‘(1r‘𝑅))(
·𝑠 ‘𝐷)𝐻)‘𝑋) = ((𝐻‘𝑋)(.r‘𝑅)((invg‘𝑅)‘(1r‘𝑅)))) |
| 54 | 20, 22, 19, 4 | lflcl 39087 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐻‘𝑋) ∈ (Base‘𝑅)) |
| 55 | 2, 8, 35, 54 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → (𝐻‘𝑋) ∈ (Base‘𝑅)) |
| 56 | 22, 44, 39, 37, 46, 55 | ringnegr 20268 |
. . . . 5
⊢ (𝜑 → ((𝐻‘𝑋)(.r‘𝑅)((invg‘𝑅)‘(1r‘𝑅))) =
((invg‘𝑅)‘(𝐻‘𝑋))) |
| 57 | 43, 53, 56 | 3eqtrd 2775 |
. . . 4
⊢ (𝜑 →
((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋) = ((invg‘𝑅)‘(𝐻‘𝑋))) |
| 58 | 57 | oveq2d 7426 |
. . 3
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋)) = ((𝐺‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐻‘𝑋)))) |
| 59 | 20, 22, 19, 4 | lflcl 39087 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑅)) |
| 60 | 2, 6, 35, 59 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑅)) |
| 61 | | ldualvsubval.s |
. . . . 5
⊢ 𝑆 = (-g‘𝑅) |
| 62 | 22, 21, 37, 61 | grpsubval 18973 |
. . . 4
⊢ (((𝐺‘𝑋) ∈ (Base‘𝑅) ∧ (𝐻‘𝑋) ∈ (Base‘𝑅)) → ((𝐺‘𝑋)𝑆(𝐻‘𝑋)) = ((𝐺‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐻‘𝑋)))) |
| 63 | 60, 55, 62 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝐺‘𝑋)𝑆(𝐻‘𝑋)) = ((𝐺‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐻‘𝑋)))) |
| 64 | 58, 63 | eqtr4d 2774 |
. 2
⊢ (𝜑 → ((𝐺‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))(
·𝑠 ‘𝐷)𝐻)‘𝑋)) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) |
| 65 | 18, 36, 64 | 3eqtrd 2775 |
1
⊢ (𝜑 → ((𝐺 − 𝐻)‘𝑋) = ((𝐺‘𝑋)𝑆(𝐻‘𝑋))) |