Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubval Structured version   Visualization version   GIF version

Theorem ldualvsubval 39150
Description: The value of the value of vector subtraction in the dual of a vector space. TODO: shorten with ldualvsub 39148? (Requires 𝐷 to oppr conversion.) (Contributed by NM, 26-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubval.v 𝑉 = (Base‘𝑊)
ldualvsubval.r 𝑅 = (Scalar‘𝑊)
ldualvsubval.s 𝑆 = (-g𝑅)
ldualvsubval.f 𝐹 = (LFnl‘𝑊)
ldualvsubval.d 𝐷 = (LDual‘𝑊)
ldualvsubval.m = (-g𝐷)
ldualvsubval.w (𝜑𝑊 ∈ LMod)
ldualvsubval.g (𝜑𝐺𝐹)
ldualvsubval.h (𝜑𝐻𝐹)
ldualvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
ldualvsubval (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))

Proof of Theorem ldualvsubval
StepHypRef Expression
1 ldualvsubval.d . . . . 5 𝐷 = (LDual‘𝑊)
2 ldualvsubval.w . . . . 5 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 39146 . . . 4 (𝜑𝐷 ∈ LMod)
4 ldualvsubval.f . . . . 5 𝐹 = (LFnl‘𝑊)
5 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsubval.g . . . . 5 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 39120 . . . 4 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsubval.h . . . . 5 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 39120 . . . 4 (𝜑𝐻 ∈ (Base‘𝐷))
10 eqid 2729 . . . . 5 (+g𝐷) = (+g𝐷)
11 ldualvsubval.m . . . . 5 = (-g𝐷)
12 eqid 2729 . . . . 5 (Scalar‘𝐷) = (Scalar‘𝐷)
13 eqid 2729 . . . . 5 ( ·𝑠𝐷) = ( ·𝑠𝐷)
14 eqid 2729 . . . . 5 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2729 . . . . 5 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 20823 . . . 4 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
173, 7, 9, 16syl3anc 1373 . . 3 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)))
1817fveq1d 6860 . 2 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋))
19 ldualvsubval.v . . 3 𝑉 = (Base‘𝑊)
20 ldualvsubval.r . . 3 𝑅 = (Scalar‘𝑊)
21 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
22 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2312lmodfgrp 20775 . . . . . . 7 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Grp)
243, 23syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐷) ∈ Grp)
2512lmodring 20774 . . . . . . . 8 (𝐷 ∈ LMod → (Scalar‘𝐷) ∈ Ring)
263, 25syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐷) ∈ Ring)
27 eqid 2729 . . . . . . . 8 (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷))
2827, 15ringidcl 20174 . . . . . . 7 ((Scalar‘𝐷) ∈ Ring → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
2926, 28syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷)))
3027, 14grpinvcl 18919 . . . . . 6 (((Scalar‘𝐷) ∈ Grp ∧ (1r‘(Scalar‘𝐷)) ∈ (Base‘(Scalar‘𝐷))) → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3124, 29, 30syl2anc 584 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘(Scalar‘𝐷)))
3220, 22, 1, 12, 27, 2ldualsbase 39126 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘𝑅))
3331, 32eleqtrd 2830 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) ∈ (Base‘𝑅))
344, 20, 22, 1, 13, 2, 33, 8ldualvscl 39132 . . 3 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
35 ldualvsubval.x . . 3 (𝜑𝑋𝑉)
3619, 20, 21, 4, 1, 10, 2, 6, 34, 35ldualvaddval 39124 . 2 (𝜑 → ((𝐺(+g𝐷)(((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻))‘𝑋) = ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)))
37 eqid 2729 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
3820, 37, 1, 12, 14, 2ldualneg 39142 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg𝑅))
39 eqid 2729 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
4020, 39, 1, 12, 15, 2ldual1 39141 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r𝑅))
4138, 40fveq12d 6865 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) = ((invg𝑅)‘(1r𝑅)))
4241oveq1d 7402 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻))
4342fveq1d 6860 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋))
44 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
4520lmodring 20774 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
462, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 20147 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4920, 22, 39lmod1cl 20795 . . . . . . . 8 (𝑊 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
502, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5122, 37grpinvcl 18919 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
534, 19, 20, 22, 44, 1, 13, 2, 52, 8, 35ldualvsval 39131 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐷)𝐻)‘𝑋) = ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
5420, 22, 19, 4lflcl 39057 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐻𝐹𝑋𝑉) → (𝐻𝑋) ∈ (Base‘𝑅))
552, 8, 35, 54syl3anc 1373 . . . . . 6 (𝜑 → (𝐻𝑋) ∈ (Base‘𝑅))
5622, 44, 39, 37, 46, 55ringnegr 20212 . . . . 5 (𝜑 → ((𝐻𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐻𝑋)))
5743, 53, 563eqtrd 2768 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋) = ((invg𝑅)‘(𝐻𝑋)))
5857oveq2d 7403 . . 3 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
5920, 22, 19, 4lflcl 39057 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑅))
602, 6, 35, 59syl3anc 1373 . . . 4 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
61 ldualvsubval.s . . . . 5 𝑆 = (-g𝑅)
6222, 21, 37, 61grpsubval 18917 . . . 4 (((𝐺𝑋) ∈ (Base‘𝑅) ∧ (𝐻𝑋) ∈ (Base‘𝑅)) → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6360, 55, 62syl2anc 584 . . 3 (𝜑 → ((𝐺𝑋)𝑆(𝐻𝑋)) = ((𝐺𝑋)(+g𝑅)((invg𝑅)‘(𝐻𝑋))))
6458, 63eqtr4d 2767 . 2 (𝜑 → ((𝐺𝑋)(+g𝑅)((((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷)))( ·𝑠𝐷)𝐻)‘𝑋)) = ((𝐺𝑋)𝑆(𝐻𝑋)))
6518, 36, 643eqtrd 2768 1 (𝜑 → ((𝐺 𝐻)‘𝑋) = ((𝐺𝑋)𝑆(𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867  1rcur 20090  Ringcrg 20142  LModclmod 20766  LFnlclfn 39050  LDualcld 39116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-lmod 20768  df-lfl 39051  df-ldual 39117
This theorem is referenced by:  lcfrlem1  41536
  Copyright terms: Public domain W3C validator