Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Visualization version   GIF version

Theorem lcdvsubval 41612
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h 𝐻 = (LHyp‘𝐾)
lcdvsubval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvsubval.v 𝑉 = (Base‘𝑈)
lcdvsubval.r 𝑅 = (Scalar‘𝑈)
lcdvsubval.s 𝑆 = (-g𝑅)
lcdvsubval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvsubval.d 𝐷 = (Base‘𝐶)
lcdvsubval.m = (-g𝐶)
lcdvsubval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvsubval.f (𝜑𝐹𝐷)
lcdvsubval.g (𝜑𝐺𝐷)
lcdvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcdvsubval (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcdvsubval.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdvsubval.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41586 . . . 4 (𝜑𝐶 ∈ LMod)
5 lcdvsubval.f . . . 4 (𝜑𝐹𝐷)
6 lcdvsubval.g . . . 4 (𝜑𝐺𝐷)
7 lcdvsubval.d . . . . 5 𝐷 = (Base‘𝐶)
8 eqid 2729 . . . . 5 (+g𝐶) = (+g𝐶)
9 lcdvsubval.m . . . . 5 = (-g𝐶)
10 eqid 2729 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
11 eqid 2729 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
12 eqid 2729 . . . . 5 (invg‘(Scalar‘𝐶)) = (invg‘(Scalar‘𝐶))
13 eqid 2729 . . . . 5 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
147, 8, 9, 10, 11, 12, 13lmodvsubval2 20823 . . . 4 ((𝐶 ∈ LMod ∧ 𝐹𝐷𝐺𝐷) → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
154, 5, 6, 14syl3anc 1373 . . 3 (𝜑 → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
1615fveq1d 6860 . 2 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋))
17 lcdvsubval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
18 lcdvsubval.v . . 3 𝑉 = (Base‘𝑈)
19 lcdvsubval.r . . 3 𝑅 = (Scalar‘𝑈)
20 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
21 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2210lmodfgrp 20775 . . . . . . 7 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Grp)
234, 22syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐶) ∈ Grp)
2410lmodring 20774 . . . . . . . 8 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Ring)
254, 24syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐶) ∈ Ring)
26 eqid 2729 . . . . . . . 8 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
2726, 13ringidcl 20174 . . . . . . 7 ((Scalar‘𝐶) ∈ Ring → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2825, 27syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2926, 12grpinvcl 18919 . . . . . 6 (((Scalar‘𝐶) ∈ Grp ∧ (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
3023, 28, 29syl2anc 584 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 41594 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐶)) = (Base‘𝑅))
3230, 31eleqtrd 2830 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘𝑅))
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 41599 . . 3 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) ∈ 𝐷)
34 lcdvsubval.x . . 3 (𝜑𝑋𝑉)
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 41592 . 2 (𝜑 → ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋) = ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)))
36 eqid 2729 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
371, 17, 19, 36, 2, 10, 12, 3lcdneg 41604 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐶)) = (invg𝑅))
38 eqid 2729 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
391, 17, 19, 38, 2, 10, 13, 3lcd1 41603 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝑅))
4037, 39fveq12d 6865 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) = ((invg𝑅)‘(1r𝑅)))
4140oveq1d 7402 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺))
4241fveq1d 6860 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋))
43 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
441, 17, 3dvhlmod 41104 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
4519lmodring 20774 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 20147 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4919, 21, 38lmod1cl 20795 . . . . . . . 8 (𝑈 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
5044, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5121, 36grpinvcl 18919 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 41598 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋) = ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 41590 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
5521, 43, 38, 36, 46, 54ringnegr 20212 . . . . 5 (𝜑 → ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐺𝑋)))
5642, 53, 553eqtrd 2768 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((invg𝑅)‘(𝐺𝑋)))
5756oveq2d 7403 . . 3 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 41590 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝑅))
59 lcdvsubval.s . . . . 5 𝑆 = (-g𝑅)
6021, 20, 36, 59grpsubval 18917 . . . 4 (((𝐹𝑋) ∈ (Base‘𝑅) ∧ (𝐺𝑋) ∈ (Base‘𝑅)) → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6158, 54, 60syl2anc 584 . . 3 (𝜑 → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6257, 61eqtr4d 2767 . 2 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)𝑆(𝐺𝑋)))
6316, 35, 623eqtrd 2768 1 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  Grpcgrp 18865  invgcminusg 18866  -gcsg 18867  1rcur 20090  Ringcrg 20142  LModclmod 20766  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-nzr 20422  df-rlreg 20603  df-domn 20604  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-lshyp 38970  df-lcv 39012  df-lfl 39051  df-lkr 39079  df-ldual 39117  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tgrp 40737  df-tendo 40749  df-edring 40751  df-dveca 40997  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342  df-djh 41389  df-lcdual 41581
This theorem is referenced by:  hdmapinvlem3  41914
  Copyright terms: Public domain W3C validator