Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Visualization version   GIF version

Theorem lcdvsubval 39632
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h 𝐻 = (LHyp‘𝐾)
lcdvsubval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvsubval.v 𝑉 = (Base‘𝑈)
lcdvsubval.r 𝑅 = (Scalar‘𝑈)
lcdvsubval.s 𝑆 = (-g𝑅)
lcdvsubval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvsubval.d 𝐷 = (Base‘𝐶)
lcdvsubval.m = (-g𝐶)
lcdvsubval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvsubval.f (𝜑𝐹𝐷)
lcdvsubval.g (𝜑𝐺𝐷)
lcdvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcdvsubval (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcdvsubval.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdvsubval.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 39606 . . . 4 (𝜑𝐶 ∈ LMod)
5 lcdvsubval.f . . . 4 (𝜑𝐹𝐷)
6 lcdvsubval.g . . . 4 (𝜑𝐺𝐷)
7 lcdvsubval.d . . . . 5 𝐷 = (Base‘𝐶)
8 eqid 2738 . . . . 5 (+g𝐶) = (+g𝐶)
9 lcdvsubval.m . . . . 5 = (-g𝐶)
10 eqid 2738 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
11 eqid 2738 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
12 eqid 2738 . . . . 5 (invg‘(Scalar‘𝐶)) = (invg‘(Scalar‘𝐶))
13 eqid 2738 . . . . 5 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
147, 8, 9, 10, 11, 12, 13lmodvsubval2 20178 . . . 4 ((𝐶 ∈ LMod ∧ 𝐹𝐷𝐺𝐷) → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
154, 5, 6, 14syl3anc 1370 . . 3 (𝜑 → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
1615fveq1d 6776 . 2 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋))
17 lcdvsubval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
18 lcdvsubval.v . . 3 𝑉 = (Base‘𝑈)
19 lcdvsubval.r . . 3 𝑅 = (Scalar‘𝑈)
20 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
21 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2210lmodfgrp 20132 . . . . . . 7 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Grp)
234, 22syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐶) ∈ Grp)
2410lmodring 20131 . . . . . . . 8 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Ring)
254, 24syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐶) ∈ Ring)
26 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
2726, 13ringidcl 19807 . . . . . . 7 ((Scalar‘𝐶) ∈ Ring → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2825, 27syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2926, 12grpinvcl 18627 . . . . . 6 (((Scalar‘𝐶) ∈ Grp ∧ (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
3023, 28, 29syl2anc 584 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 39614 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐶)) = (Base‘𝑅))
3230, 31eleqtrd 2841 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘𝑅))
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 39619 . . 3 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) ∈ 𝐷)
34 lcdvsubval.x . . 3 (𝜑𝑋𝑉)
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 39612 . 2 (𝜑 → ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋) = ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)))
36 eqid 2738 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
371, 17, 19, 36, 2, 10, 12, 3lcdneg 39624 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐶)) = (invg𝑅))
38 eqid 2738 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
391, 17, 19, 38, 2, 10, 13, 3lcd1 39623 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝑅))
4037, 39fveq12d 6781 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) = ((invg𝑅)‘(1r𝑅)))
4140oveq1d 7290 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺))
4241fveq1d 6776 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋))
43 eqid 2738 . . . . . 6 (.r𝑅) = (.r𝑅)
441, 17, 3dvhlmod 39124 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
4519lmodring 20131 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 19788 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4919, 21, 38lmod1cl 20150 . . . . . . . 8 (𝑈 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
5044, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5121, 36grpinvcl 18627 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 39618 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋) = ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 39610 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
5521, 43, 38, 36, 46, 54rngnegr 19834 . . . . 5 (𝜑 → ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐺𝑋)))
5642, 53, 553eqtrd 2782 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((invg𝑅)‘(𝐺𝑋)))
5756oveq2d 7291 . . 3 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 39610 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝑅))
59 lcdvsubval.s . . . . 5 𝑆 = (-g𝑅)
6021, 20, 36, 59grpsubval 18625 . . . 4 (((𝐹𝑋) ∈ (Base‘𝑅) ∧ (𝐺𝑋) ∈ (Base‘𝑅)) → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6158, 54, 60syl2anc 584 . . 3 (𝜑 → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6257, 61eqtr4d 2781 . 2 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)𝑆(𝐺𝑋)))
6316, 35, 623eqtrd 2782 1 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579  1rcur 19737  Ringcrg 19783  LModclmod 20123  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  LCDualclcd 39600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-oppg 18950  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lcv 37033  df-lfl 37072  df-lkr 37100  df-ldual 37138  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409  df-lcdual 39601
This theorem is referenced by:  hdmapinvlem3  39934
  Copyright terms: Public domain W3C validator