Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Visualization version   GIF version

Theorem lcdvsubval 38769
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h 𝐻 = (LHyp‘𝐾)
lcdvsubval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvsubval.v 𝑉 = (Base‘𝑈)
lcdvsubval.r 𝑅 = (Scalar‘𝑈)
lcdvsubval.s 𝑆 = (-g𝑅)
lcdvsubval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvsubval.d 𝐷 = (Base‘𝐶)
lcdvsubval.m = (-g𝐶)
lcdvsubval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvsubval.f (𝜑𝐹𝐷)
lcdvsubval.g (𝜑𝐺𝐷)
lcdvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcdvsubval (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcdvsubval.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdvsubval.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 38743 . . . 4 (𝜑𝐶 ∈ LMod)
5 lcdvsubval.f . . . 4 (𝜑𝐹𝐷)
6 lcdvsubval.g . . . 4 (𝜑𝐺𝐷)
7 lcdvsubval.d . . . . 5 𝐷 = (Base‘𝐶)
8 eqid 2821 . . . . 5 (+g𝐶) = (+g𝐶)
9 lcdvsubval.m . . . . 5 = (-g𝐶)
10 eqid 2821 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
11 eqid 2821 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
12 eqid 2821 . . . . 5 (invg‘(Scalar‘𝐶)) = (invg‘(Scalar‘𝐶))
13 eqid 2821 . . . . 5 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
147, 8, 9, 10, 11, 12, 13lmodvsubval2 19689 . . . 4 ((𝐶 ∈ LMod ∧ 𝐹𝐷𝐺𝐷) → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
154, 5, 6, 14syl3anc 1367 . . 3 (𝜑 → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
1615fveq1d 6672 . 2 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋))
17 lcdvsubval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
18 lcdvsubval.v . . 3 𝑉 = (Base‘𝑈)
19 lcdvsubval.r . . 3 𝑅 = (Scalar‘𝑈)
20 eqid 2821 . . 3 (+g𝑅) = (+g𝑅)
21 eqid 2821 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2210lmodfgrp 19643 . . . . . . 7 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Grp)
234, 22syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐶) ∈ Grp)
2410lmodring 19642 . . . . . . . 8 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Ring)
254, 24syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐶) ∈ Ring)
26 eqid 2821 . . . . . . . 8 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
2726, 13ringidcl 19318 . . . . . . 7 ((Scalar‘𝐶) ∈ Ring → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2825, 27syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2926, 12grpinvcl 18151 . . . . . 6 (((Scalar‘𝐶) ∈ Grp ∧ (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
3023, 28, 29syl2anc 586 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 38751 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐶)) = (Base‘𝑅))
3230, 31eleqtrd 2915 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘𝑅))
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 38756 . . 3 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) ∈ 𝐷)
34 lcdvsubval.x . . 3 (𝜑𝑋𝑉)
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 38749 . 2 (𝜑 → ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋) = ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)))
36 eqid 2821 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
371, 17, 19, 36, 2, 10, 12, 3lcdneg 38761 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐶)) = (invg𝑅))
38 eqid 2821 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
391, 17, 19, 38, 2, 10, 13, 3lcd1 38760 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝑅))
4037, 39fveq12d 6677 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) = ((invg𝑅)‘(1r𝑅)))
4140oveq1d 7171 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺))
4241fveq1d 6672 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋))
43 eqid 2821 . . . . . 6 (.r𝑅) = (.r𝑅)
441, 17, 3dvhlmod 38261 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
4519lmodring 19642 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 19302 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4919, 21, 38lmod1cl 19661 . . . . . . . 8 (𝑈 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
5044, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5121, 36grpinvcl 18151 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 586 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 38755 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋) = ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 38747 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
5521, 43, 38, 36, 46, 54rngnegr 19345 . . . . 5 (𝜑 → ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐺𝑋)))
5642, 53, 553eqtrd 2860 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((invg𝑅)‘(𝐺𝑋)))
5756oveq2d 7172 . . 3 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 38747 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝑅))
59 lcdvsubval.s . . . . 5 𝑆 = (-g𝑅)
6021, 20, 36, 59grpsubval 18149 . . . 4 (((𝐹𝑋) ∈ (Base‘𝑅) ∧ (𝐺𝑋) ∈ (Base‘𝑅)) → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6158, 54, 60syl2anc 586 . . 3 (𝜑 → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6257, 61eqtr4d 2859 . 2 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)𝑆(𝐺𝑋)))
6316, 35, 623eqtrd 2860 1 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  Grpcgrp 18103  invgcminusg 18104  -gcsg 18105  1rcur 19251  Ringcrg 19297  LModclmod 19634  HLchlt 36501  LHypclh 37135  DVecHcdvh 38229  LCDualclcd 38737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-undef 7939  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-mre 16857  df-mrc 16858  df-acs 16860  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-oppg 18474  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-lsatoms 36127  df-lshyp 36128  df-lcv 36170  df-lfl 36209  df-lkr 36237  df-ldual 36275  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tgrp 37894  df-tendo 37906  df-edring 37908  df-dveca 38154  df-disoa 38180  df-dvech 38230  df-dib 38290  df-dic 38324  df-dih 38380  df-doch 38499  df-djh 38546  df-lcdual 38738
This theorem is referenced by:  hdmapinvlem3  39071
  Copyright terms: Public domain W3C validator