Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Visualization version   GIF version

Theorem lcdvsubval 39559
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h 𝐻 = (LHyp‘𝐾)
lcdvsubval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvsubval.v 𝑉 = (Base‘𝑈)
lcdvsubval.r 𝑅 = (Scalar‘𝑈)
lcdvsubval.s 𝑆 = (-g𝑅)
lcdvsubval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvsubval.d 𝐷 = (Base‘𝐶)
lcdvsubval.m = (-g𝐶)
lcdvsubval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvsubval.f (𝜑𝐹𝐷)
lcdvsubval.g (𝜑𝐺𝐷)
lcdvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcdvsubval (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcdvsubval.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdvsubval.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 39533 . . . 4 (𝜑𝐶 ∈ LMod)
5 lcdvsubval.f . . . 4 (𝜑𝐹𝐷)
6 lcdvsubval.g . . . 4 (𝜑𝐺𝐷)
7 lcdvsubval.d . . . . 5 𝐷 = (Base‘𝐶)
8 eqid 2738 . . . . 5 (+g𝐶) = (+g𝐶)
9 lcdvsubval.m . . . . 5 = (-g𝐶)
10 eqid 2738 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
11 eqid 2738 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
12 eqid 2738 . . . . 5 (invg‘(Scalar‘𝐶)) = (invg‘(Scalar‘𝐶))
13 eqid 2738 . . . . 5 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
147, 8, 9, 10, 11, 12, 13lmodvsubval2 20093 . . . 4 ((𝐶 ∈ LMod ∧ 𝐹𝐷𝐺𝐷) → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
154, 5, 6, 14syl3anc 1369 . . 3 (𝜑 → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
1615fveq1d 6758 . 2 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋))
17 lcdvsubval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
18 lcdvsubval.v . . 3 𝑉 = (Base‘𝑈)
19 lcdvsubval.r . . 3 𝑅 = (Scalar‘𝑈)
20 eqid 2738 . . 3 (+g𝑅) = (+g𝑅)
21 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2210lmodfgrp 20047 . . . . . . 7 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Grp)
234, 22syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐶) ∈ Grp)
2410lmodring 20046 . . . . . . . 8 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Ring)
254, 24syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐶) ∈ Ring)
26 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
2726, 13ringidcl 19722 . . . . . . 7 ((Scalar‘𝐶) ∈ Ring → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2825, 27syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2926, 12grpinvcl 18542 . . . . . 6 (((Scalar‘𝐶) ∈ Grp ∧ (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
3023, 28, 29syl2anc 583 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 39541 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐶)) = (Base‘𝑅))
3230, 31eleqtrd 2841 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘𝑅))
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 39546 . . 3 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) ∈ 𝐷)
34 lcdvsubval.x . . 3 (𝜑𝑋𝑉)
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 39539 . 2 (𝜑 → ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋) = ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)))
36 eqid 2738 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
371, 17, 19, 36, 2, 10, 12, 3lcdneg 39551 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐶)) = (invg𝑅))
38 eqid 2738 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
391, 17, 19, 38, 2, 10, 13, 3lcd1 39550 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝑅))
4037, 39fveq12d 6763 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) = ((invg𝑅)‘(1r𝑅)))
4140oveq1d 7270 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺))
4241fveq1d 6758 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋))
43 eqid 2738 . . . . . 6 (.r𝑅) = (.r𝑅)
441, 17, 3dvhlmod 39051 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
4519lmodring 20046 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 19703 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4919, 21, 38lmod1cl 20065 . . . . . . . 8 (𝑈 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
5044, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5121, 36grpinvcl 18542 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 583 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 39545 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋) = ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 39537 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
5521, 43, 38, 36, 46, 54rngnegr 19749 . . . . 5 (𝜑 → ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐺𝑋)))
5642, 53, 553eqtrd 2782 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((invg𝑅)‘(𝐺𝑋)))
5756oveq2d 7271 . . 3 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 39537 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝑅))
59 lcdvsubval.s . . . . 5 𝑆 = (-g𝑅)
6021, 20, 36, 59grpsubval 18540 . . . 4 (((𝐹𝑋) ∈ (Base‘𝑅) ∧ (𝐺𝑋) ∈ (Base‘𝑅)) → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6158, 54, 60syl2anc 583 . . 3 (𝜑 → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6257, 61eqtr4d 2781 . 2 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)𝑆(𝐺𝑋)))
6316, 35, 623eqtrd 2782 1 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  1rcur 19652  Ringcrg 19698  LModclmod 20038  HLchlt 37291  LHypclh 37925  DVecHcdvh 39019  LCDualclcd 39527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-undef 8060  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-mre 17212  df-mrc 17213  df-acs 17215  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-oppg 18865  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lsatoms 36917  df-lshyp 36918  df-lcv 36960  df-lfl 36999  df-lkr 37027  df-ldual 37065  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441  df-lines 37442  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-tgrp 38684  df-tendo 38696  df-edring 38698  df-dveca 38944  df-disoa 38970  df-dvech 39020  df-dib 39080  df-dic 39114  df-dih 39170  df-doch 39289  df-djh 39336  df-lcdual 39528
This theorem is referenced by:  hdmapinvlem3  39861
  Copyright terms: Public domain W3C validator