Proof of Theorem lcdvsubval
Step | Hyp | Ref
| Expression |
1 | | lcdvsubval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | lcdvsubval.c |
. . . . 5
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
3 | | lcdvsubval.k |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | 1, 2, 3 | lcdlmod 39606 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | | lcdvsubval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
6 | | lcdvsubval.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐷) |
7 | | lcdvsubval.d |
. . . . 5
⊢ 𝐷 = (Base‘𝐶) |
8 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝐶) = (+g‘𝐶) |
9 | | lcdvsubval.m |
. . . . 5
⊢ − =
(-g‘𝐶) |
10 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝐶) =
(Scalar‘𝐶) |
11 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝐶) = ( ·𝑠
‘𝐶) |
12 | | eqid 2738 |
. . . . 5
⊢
(invg‘(Scalar‘𝐶)) =
(invg‘(Scalar‘𝐶)) |
13 | | eqid 2738 |
. . . . 5
⊢
(1r‘(Scalar‘𝐶)) =
(1r‘(Scalar‘𝐶)) |
14 | 7, 8, 9, 10, 11, 12, 13 | lmodvsubval2 20178 |
. . . 4
⊢ ((𝐶 ∈ LMod ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 − 𝐺) = (𝐹(+g‘𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺))) |
15 | 4, 5, 6, 14 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝐹 − 𝐺) = (𝐹(+g‘𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺))) |
16 | 15 | fveq1d 6776 |
. 2
⊢ (𝜑 → ((𝐹 − 𝐺)‘𝑋) = ((𝐹(+g‘𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺))‘𝑋)) |
17 | | lcdvsubval.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
18 | | lcdvsubval.v |
. . 3
⊢ 𝑉 = (Base‘𝑈) |
19 | | lcdvsubval.r |
. . 3
⊢ 𝑅 = (Scalar‘𝑈) |
20 | | eqid 2738 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
21 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
22 | 10 | lmodfgrp 20132 |
. . . . . . 7
⊢ (𝐶 ∈ LMod →
(Scalar‘𝐶) ∈
Grp) |
23 | 4, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Scalar‘𝐶) ∈ Grp) |
24 | 10 | lmodring 20131 |
. . . . . . . 8
⊢ (𝐶 ∈ LMod →
(Scalar‘𝐶) ∈
Ring) |
25 | 4, 24 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (Scalar‘𝐶) ∈ Ring) |
26 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) |
27 | 26, 13 | ringidcl 19807 |
. . . . . . 7
⊢
((Scalar‘𝐶)
∈ Ring → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) |
28 | 25, 27 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) |
29 | 26, 12 | grpinvcl 18627 |
. . . . . 6
⊢
(((Scalar‘𝐶)
∈ Grp ∧ (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) →
((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈
(Base‘(Scalar‘𝐶))) |
30 | 23, 28, 29 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈
(Base‘(Scalar‘𝐶))) |
31 | 1, 17, 19, 21, 2, 10, 26, 3 | lcdsbase 39614 |
. . . . 5
⊢ (𝜑 →
(Base‘(Scalar‘𝐶)) = (Base‘𝑅)) |
32 | 30, 31 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 →
((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘𝑅)) |
33 | 1, 17, 19, 21, 2, 7, 11, 3, 32, 6 | lcdvscl 39619 |
. . 3
⊢ (𝜑 →
(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺) ∈ 𝐷) |
34 | | lcdvsubval.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
35 | 1, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34 | lcdvaddval 39612 |
. 2
⊢ (𝜑 → ((𝐹(+g‘𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺))‘𝑋) = ((𝐹‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺)‘𝑋))) |
36 | | eqid 2738 |
. . . . . . . . 9
⊢
(invg‘𝑅) = (invg‘𝑅) |
37 | 1, 17, 19, 36, 2, 10, 12, 3 | lcdneg 39624 |
. . . . . . . 8
⊢ (𝜑 →
(invg‘(Scalar‘𝐶)) = (invg‘𝑅)) |
38 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑅) = (1r‘𝑅) |
39 | 1, 17, 19, 38, 2, 10, 13, 3 | lcd1 39623 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(Scalar‘𝐶)) = (1r‘𝑅)) |
40 | 37, 39 | fveq12d 6781 |
. . . . . . 7
⊢ (𝜑 →
((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) = ((invg‘𝑅)‘(1r‘𝑅))) |
41 | 40 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 →
(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺) = (((invg‘𝑅)‘(1r‘𝑅))( ·𝑠
‘𝐶)𝐺)) |
42 | 41 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 →
((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺)‘𝑋) = ((((invg‘𝑅)‘(1r‘𝑅))( ·𝑠
‘𝐶)𝐺)‘𝑋)) |
43 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
44 | 1, 17, 3 | dvhlmod 39124 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ LMod) |
45 | 19 | lmodring 20131 |
. . . . . . . . 9
⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
46 | 44, 45 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
47 | | ringgrp 19788 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
49 | 19, 21, 38 | lmod1cl 20150 |
. . . . . . . 8
⊢ (𝑈 ∈ LMod →
(1r‘𝑅)
∈ (Base‘𝑅)) |
50 | 44, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
51 | 21, 36 | grpinvcl 18627 |
. . . . . . 7
⊢ ((𝑅 ∈ Grp ∧
(1r‘𝑅)
∈ (Base‘𝑅))
→ ((invg‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) |
52 | 48, 50, 51 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝑅)‘(1r‘𝑅)) ∈ (Base‘𝑅)) |
53 | 1, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34 | lcdvsval 39618 |
. . . . 5
⊢ (𝜑 →
((((invg‘𝑅)‘(1r‘𝑅))(
·𝑠 ‘𝐶)𝐺)‘𝑋) = ((𝐺‘𝑋)(.r‘𝑅)((invg‘𝑅)‘(1r‘𝑅)))) |
54 | 1, 17, 18, 19, 21, 2, 7, 3, 6, 34 | lcdvbasecl 39610 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑅)) |
55 | 21, 43, 38, 36, 46, 54 | rngnegr 19834 |
. . . . 5
⊢ (𝜑 → ((𝐺‘𝑋)(.r‘𝑅)((invg‘𝑅)‘(1r‘𝑅))) =
((invg‘𝑅)‘(𝐺‘𝑋))) |
56 | 42, 53, 55 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 →
((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺)‘𝑋) = ((invg‘𝑅)‘(𝐺‘𝑋))) |
57 | 56 | oveq2d 7291 |
. . 3
⊢ (𝜑 → ((𝐹‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺)‘𝑋)) = ((𝐹‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑋)))) |
58 | 1, 17, 18, 19, 21, 2, 7, 3, 5, 34 | lcdvbasecl 39610 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝑅)) |
59 | | lcdvsubval.s |
. . . . 5
⊢ 𝑆 = (-g‘𝑅) |
60 | 21, 20, 36, 59 | grpsubval 18625 |
. . . 4
⊢ (((𝐹‘𝑋) ∈ (Base‘𝑅) ∧ (𝐺‘𝑋) ∈ (Base‘𝑅)) → ((𝐹‘𝑋)𝑆(𝐺‘𝑋)) = ((𝐹‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑋)))) |
61 | 58, 54, 60 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝐹‘𝑋)𝑆(𝐺‘𝑋)) = ((𝐹‘𝑋)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑋)))) |
62 | 57, 61 | eqtr4d 2781 |
. 2
⊢ (𝜑 → ((𝐹‘𝑋)(+g‘𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))(
·𝑠 ‘𝐶)𝐺)‘𝑋)) = ((𝐹‘𝑋)𝑆(𝐺‘𝑋))) |
63 | 16, 35, 62 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝐹 − 𝐺)‘𝑋) = ((𝐹‘𝑋)𝑆(𝐺‘𝑋))) |