Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Visualization version   GIF version

Theorem lcdvsubval 41575
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h 𝐻 = (LHyp‘𝐾)
lcdvsubval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvsubval.v 𝑉 = (Base‘𝑈)
lcdvsubval.r 𝑅 = (Scalar‘𝑈)
lcdvsubval.s 𝑆 = (-g𝑅)
lcdvsubval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvsubval.d 𝐷 = (Base‘𝐶)
lcdvsubval.m = (-g𝐶)
lcdvsubval.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvsubval.f (𝜑𝐹𝐷)
lcdvsubval.g (𝜑𝐺𝐷)
lcdvsubval.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcdvsubval (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcdvsubval.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdvsubval.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41549 . . . 4 (𝜑𝐶 ∈ LMod)
5 lcdvsubval.f . . . 4 (𝜑𝐹𝐷)
6 lcdvsubval.g . . . 4 (𝜑𝐺𝐷)
7 lcdvsubval.d . . . . 5 𝐷 = (Base‘𝐶)
8 eqid 2740 . . . . 5 (+g𝐶) = (+g𝐶)
9 lcdvsubval.m . . . . 5 = (-g𝐶)
10 eqid 2740 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
11 eqid 2740 . . . . 5 ( ·𝑠𝐶) = ( ·𝑠𝐶)
12 eqid 2740 . . . . 5 (invg‘(Scalar‘𝐶)) = (invg‘(Scalar‘𝐶))
13 eqid 2740 . . . . 5 (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶))
147, 8, 9, 10, 11, 12, 13lmodvsubval2 20937 . . . 4 ((𝐶 ∈ LMod ∧ 𝐹𝐷𝐺𝐷) → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
154, 5, 6, 14syl3anc 1371 . . 3 (𝜑 → (𝐹 𝐺) = (𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)))
1615fveq1d 6922 . 2 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋))
17 lcdvsubval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
18 lcdvsubval.v . . 3 𝑉 = (Base‘𝑈)
19 lcdvsubval.r . . 3 𝑅 = (Scalar‘𝑈)
20 eqid 2740 . . 3 (+g𝑅) = (+g𝑅)
21 eqid 2740 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2210lmodfgrp 20889 . . . . . . 7 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Grp)
234, 22syl 17 . . . . . 6 (𝜑 → (Scalar‘𝐶) ∈ Grp)
2410lmodring 20888 . . . . . . . 8 (𝐶 ∈ LMod → (Scalar‘𝐶) ∈ Ring)
254, 24syl 17 . . . . . . 7 (𝜑 → (Scalar‘𝐶) ∈ Ring)
26 eqid 2740 . . . . . . . 8 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
2726, 13ringidcl 20289 . . . . . . 7 ((Scalar‘𝐶) ∈ Ring → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2825, 27syl 17 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶)))
2926, 12grpinvcl 19027 . . . . . 6 (((Scalar‘𝐶) ∈ Grp ∧ (1r‘(Scalar‘𝐶)) ∈ (Base‘(Scalar‘𝐶))) → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
3023, 28, 29syl2anc 583 . . . . 5 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘(Scalar‘𝐶)))
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 41557 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐶)) = (Base‘𝑅))
3230, 31eleqtrd 2846 . . . 4 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) ∈ (Base‘𝑅))
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 41562 . . 3 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) ∈ 𝐷)
34 lcdvsubval.x . . 3 (𝜑𝑋𝑉)
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 41555 . 2 (𝜑 → ((𝐹(+g𝐶)(((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺))‘𝑋) = ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)))
36 eqid 2740 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
371, 17, 19, 36, 2, 10, 12, 3lcdneg 41567 . . . . . . . 8 (𝜑 → (invg‘(Scalar‘𝐶)) = (invg𝑅))
38 eqid 2740 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
391, 17, 19, 38, 2, 10, 13, 3lcd1 41566 . . . . . . . 8 (𝜑 → (1r‘(Scalar‘𝐶)) = (1r𝑅))
4037, 39fveq12d 6927 . . . . . . 7 (𝜑 → ((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶))) = ((invg𝑅)‘(1r𝑅)))
4140oveq1d 7463 . . . . . 6 (𝜑 → (((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺) = (((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺))
4241fveq1d 6922 . . . . 5 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋))
43 eqid 2740 . . . . . 6 (.r𝑅) = (.r𝑅)
441, 17, 3dvhlmod 41067 . . . . . . . . 9 (𝜑𝑈 ∈ LMod)
4519lmodring 20888 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
4644, 45syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
47 ringgrp 20265 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
4846, 47syl 17 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4919, 21, 38lmod1cl 20909 . . . . . . . 8 (𝑈 ∈ LMod → (1r𝑅) ∈ (Base‘𝑅))
5044, 49syl 17 . . . . . . 7 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
5121, 36grpinvcl 19027 . . . . . . 7 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ (Base‘𝑅)) → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
5248, 50, 51syl2anc 583 . . . . . 6 (𝜑 → ((invg𝑅)‘(1r𝑅)) ∈ (Base‘𝑅))
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 41561 . . . . 5 (𝜑 → ((((invg𝑅)‘(1r𝑅))( ·𝑠𝐶)𝐺)‘𝑋) = ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))))
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 41553 . . . . . 6 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑅))
5521, 43, 38, 36, 46, 54ringnegr 20326 . . . . 5 (𝜑 → ((𝐺𝑋)(.r𝑅)((invg𝑅)‘(1r𝑅))) = ((invg𝑅)‘(𝐺𝑋)))
5642, 53, 553eqtrd 2784 . . . 4 (𝜑 → ((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋) = ((invg𝑅)‘(𝐺𝑋)))
5756oveq2d 7464 . . 3 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 41553 . . . 4 (𝜑 → (𝐹𝑋) ∈ (Base‘𝑅))
59 lcdvsubval.s . . . . 5 𝑆 = (-g𝑅)
6021, 20, 36, 59grpsubval 19025 . . . 4 (((𝐹𝑋) ∈ (Base‘𝑅) ∧ (𝐺𝑋) ∈ (Base‘𝑅)) → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6158, 54, 60syl2anc 583 . . 3 (𝜑 → ((𝐹𝑋)𝑆(𝐺𝑋)) = ((𝐹𝑋)(+g𝑅)((invg𝑅)‘(𝐺𝑋))))
6257, 61eqtr4d 2783 . 2 (𝜑 → ((𝐹𝑋)(+g𝑅)((((invg‘(Scalar‘𝐶))‘(1r‘(Scalar‘𝐶)))( ·𝑠𝐶)𝐺)‘𝑋)) = ((𝐹𝑋)𝑆(𝐺𝑋)))
6316, 35, 623eqtrd 2784 1 (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋)𝑆(𝐺𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  1rcur 20208  Ringcrg 20260  LModclmod 20880  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  LCDualclcd 41543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-nzr 20539  df-rlreg 20716  df-domn 20717  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-lshyp 38933  df-lcv 38975  df-lfl 39014  df-lkr 39042  df-ldual 39080  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tgrp 40700  df-tendo 40712  df-edring 40714  df-dveca 40960  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186  df-doch 41305  df-djh 41352  df-lcdual 41544
This theorem is referenced by:  hdmapinvlem3  41877
  Copyright terms: Public domain W3C validator