| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41586. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem1.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem1.q | ⊢ × = (.r‘𝑆) |
| lcfrlem1.z | ⊢ 0 = (0g‘𝑆) |
| lcfrlem1.i | ⊢ 𝐼 = (invr‘𝑆) |
| lcfrlem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lcfrlem1.m | ⊢ − = (-g‘𝐷) |
| lcfrlem1.u | ⊢ (𝜑 → 𝑈 ∈ LVec) |
| lcfrlem1.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lcfrlem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lcfrlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lcfrlem1.n | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
| lcfrlem1.h | ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) |
| Ref | Expression |
|---|---|
| lcfrlem1 | ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem1.h | . . 3 ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) | |
| 2 | 1 | fveq1i 6862 | . 2 ⊢ (𝐻‘𝑋) = ((𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))‘𝑋) |
| 3 | lcfrlem1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | lcfrlem1.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 5 | eqid 2730 | . . . 4 ⊢ (-g‘𝑆) = (-g‘𝑆) | |
| 6 | lcfrlem1.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 7 | lcfrlem1.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lcfrlem1.m | . . . 4 ⊢ − = (-g‘𝐷) | |
| 9 | lcfrlem1.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
| 10 | lveclmod 21020 | . . . . 5 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | lcfrlem1.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 13 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 14 | lcfrlem1.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 15 | 4 | lvecdrng 21019 | . . . . . . . 8 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
| 16 | 9, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 17 | lcfrlem1.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 18 | lcfrlem1.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 19 | 4, 13, 3, 6 | lflcl 39064 | . . . . . . . 8 ⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 20 | 9, 17, 18, 19 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 21 | lcfrlem1.n | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) | |
| 22 | lcfrlem1.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑆) | |
| 23 | lcfrlem1.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝑆) | |
| 24 | 13, 22, 23 | drnginvrcl 20669 | . . . . . . 7 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 25 | 16, 20, 21, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 26 | 4, 13, 3, 6 | lflcl 39064 | . . . . . . 7 ⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 27 | 9, 12, 18, 26 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 28 | lcfrlem1.q | . . . . . . 7 ⊢ × = (.r‘𝑆) | |
| 29 | 4, 13, 28 | lmodmcl 20786 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 30 | 11, 25, 27, 29 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 31 | 6, 4, 13, 7, 14, 11, 30, 17 | ldualvscl 39139 | . . . 4 ⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) |
| 32 | 3, 4, 5, 6, 7, 8, 11, 12, 31, 18 | ldualvsubval 39157 | . . 3 ⊢ (𝜑 → ((𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))‘𝑋) = ((𝐸‘𝑋)(-g‘𝑆)((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋))) |
| 33 | 6, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18 | ldualvsval 39138 | . . . . 5 ⊢ (𝜑 → ((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋) = ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)))) |
| 34 | eqid 2730 | . . . . . . . . 9 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 35 | 13, 22, 28, 34, 23 | drnginvrr 20673 | . . . . . . . 8 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) = (1r‘𝑆)) |
| 36 | 16, 20, 21, 35 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) = (1r‘𝑆)) |
| 37 | 36 | oveq1d 7405 | . . . . . 6 ⊢ (𝜑 → (((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) × (𝐸‘𝑋)) = ((1r‘𝑆) × (𝐸‘𝑋))) |
| 38 | 4 | lmodring 20781 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
| 39 | 11, 38 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 40 | 13, 28 | ringass 20169 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ ((𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆))) → (((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) × (𝐸‘𝑋)) = ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)))) |
| 41 | 39, 20, 25, 27, 40 | syl13anc 1374 | . . . . . 6 ⊢ (𝜑 → (((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) × (𝐸‘𝑋)) = ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)))) |
| 42 | 13, 28, 34 | ringlidm 20185 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((1r‘𝑆) × (𝐸‘𝑋)) = (𝐸‘𝑋)) |
| 43 | 39, 27, 42 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((1r‘𝑆) × (𝐸‘𝑋)) = (𝐸‘𝑋)) |
| 44 | 37, 41, 43 | 3eqtr3d 2773 | . . . . 5 ⊢ (𝜑 → ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋))) = (𝐸‘𝑋)) |
| 45 | 33, 44 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋) = (𝐸‘𝑋)) |
| 46 | 45 | oveq2d 7406 | . . 3 ⊢ (𝜑 → ((𝐸‘𝑋)(-g‘𝑆)((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋)) = ((𝐸‘𝑋)(-g‘𝑆)(𝐸‘𝑋))) |
| 47 | 4 | lmodfgrp 20782 | . . . . 5 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Grp) |
| 48 | 11, 47 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 49 | 13, 22, 5 | grpsubid 18963 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐸‘𝑋)(-g‘𝑆)(𝐸‘𝑋)) = 0 ) |
| 50 | 48, 27, 49 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐸‘𝑋)(-g‘𝑆)(𝐸‘𝑋)) = 0 ) |
| 51 | 32, 46, 50 | 3eqtrd 2769 | . 2 ⊢ (𝜑 → ((𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))‘𝑋) = 0 ) |
| 52 | 2, 51 | eqtrid 2777 | 1 ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 Grpcgrp 18872 -gcsg 18874 1rcur 20097 Ringcrg 20149 invrcinvr 20303 DivRingcdr 20645 LModclmod 20773 LVecclvec 21016 LFnlclfn 39057 LDualcld 39123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20647 df-lmod 20775 df-lvec 21017 df-lfl 39058 df-ldual 39124 |
| This theorem is referenced by: lcfrlem3 41545 |
| Copyright terms: Public domain | W3C validator |