Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem1 Structured version   Visualization version   GIF version

Theorem lcfrlem1 41243
Description: Lemma for lcfr 41286. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
Assertion
Ref Expression
lcfrlem1 (𝜑 → (𝐻𝑋) = 0 )

Proof of Theorem lcfrlem1
StepHypRef Expression
1 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
21fveq1i 6904 . 2 (𝐻𝑋) = ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋)
3 lcfrlem1.v . . . 4 𝑉 = (Base‘𝑈)
4 lcfrlem1.s . . . 4 𝑆 = (Scalar‘𝑈)
5 eqid 2726 . . . 4 (-g𝑆) = (-g𝑆)
6 lcfrlem1.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcfrlem1.m . . . 4 = (-g𝐷)
9 lcfrlem1.u . . . . 5 (𝜑𝑈 ∈ LVec)
10 lveclmod 21086 . . . . 5 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝑈 ∈ LMod)
12 lcfrlem1.e . . . 4 (𝜑𝐸𝐹)
13 eqid 2726 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
14 lcfrlem1.t . . . . 5 · = ( ·𝑠𝐷)
154lvecdrng 21085 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
169, 15syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
17 lcfrlem1.g . . . . . . . 8 (𝜑𝐺𝐹)
18 lcfrlem1.x . . . . . . . 8 (𝜑𝑋𝑉)
194, 13, 3, 6lflcl 38764 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
209, 17, 18, 19syl3anc 1368 . . . . . . 7 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
21 lcfrlem1.n . . . . . . 7 (𝜑 → (𝐺𝑋) ≠ 0 )
22 lcfrlem1.z . . . . . . . 8 0 = (0g𝑆)
23 lcfrlem1.i . . . . . . . 8 𝐼 = (invr𝑆)
2413, 22, 23drnginvrcl 20733 . . . . . . 7 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2516, 20, 21, 24syl3anc 1368 . . . . . 6 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
264, 13, 3, 6lflcl 38764 . . . . . . 7 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
279, 12, 18, 26syl3anc 1368 . . . . . 6 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
28 lcfrlem1.q . . . . . . 7 × = (.r𝑆)
294, 13, 28lmodmcl 20851 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3011, 25, 27, 29syl3anc 1368 . . . . 5 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
316, 4, 13, 7, 14, 11, 30, 17ldualvscl 38839 . . . 4 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
323, 4, 5, 6, 7, 8, 11, 12, 31, 18ldualvsubval 38857 . . 3 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)))
336, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18ldualvsval 38838 . . . . 5 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
34 eqid 2726 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3513, 22, 28, 34, 23drnginvrr 20737 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3616, 20, 21, 35syl3anc 1368 . . . . . . 7 (𝜑 → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3736oveq1d 7441 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((1r𝑆) × (𝐸𝑋)))
384lmodring 20846 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
3911, 38syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
4013, 28ringass 20238 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆))) → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4139, 20, 25, 27, 40syl13anc 1369 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4213, 28, 34ringlidm 20250 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4339, 27, 42syl2anc 582 . . . . . 6 (𝜑 → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4437, 41, 433eqtr3d 2774 . . . . 5 (𝜑 → ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))) = (𝐸𝑋))
4533, 44eqtrd 2766 . . . 4 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = (𝐸𝑋))
4645oveq2d 7442 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)) = ((𝐸𝑋)(-g𝑆)(𝐸𝑋)))
474lmodfgrp 20847 . . . . 5 (𝑈 ∈ LMod → 𝑆 ∈ Grp)
4811, 47syl 17 . . . 4 (𝜑𝑆 ∈ Grp)
4913, 22, 5grpsubid 19020 . . . 4 ((𝑆 ∈ Grp ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5048, 27, 49syl2anc 582 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5132, 46, 503eqtrd 2770 . 2 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = 0 )
522, 51eqtrid 2778 1 (𝜑 → (𝐻𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wne 2930  cfv 6556  (class class class)co 7426  Basecbs 17215  .rcmulr 17269  Scalarcsca 17271   ·𝑠 cvsca 17272  0gc0g 17456  Grpcgrp 18930  -gcsg 18932  1rcur 20166  Ringcrg 20218  invrcinvr 20371  DivRingcdr 20709  LModclmod 20838  LVecclvec 21082  LFnlclfn 38757  LDualcld 38823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8005  df-2nd 8006  df-tpos 8243  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-er 8736  df-map 8859  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-mulr 17282  df-sca 17284  df-vsca 17285  df-0g 17458  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-grp 18933  df-minusg 18934  df-sbg 18935  df-cmn 19782  df-abl 19783  df-mgp 20120  df-rng 20138  df-ur 20167  df-ring 20220  df-oppr 20318  df-dvdsr 20341  df-unit 20342  df-invr 20372  df-drng 20711  df-lmod 20840  df-lvec 21083  df-lfl 38758  df-ldual 38824
This theorem is referenced by:  lcfrlem3  41245
  Copyright terms: Public domain W3C validator