Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem1 Structured version   Visualization version   GIF version

Theorem lcfrlem1 41544
Description: Lemma for lcfr 41587. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
Assertion
Ref Expression
lcfrlem1 (𝜑 → (𝐻𝑋) = 0 )

Proof of Theorem lcfrlem1
StepHypRef Expression
1 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
21fveq1i 6907 . 2 (𝐻𝑋) = ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋)
3 lcfrlem1.v . . . 4 𝑉 = (Base‘𝑈)
4 lcfrlem1.s . . . 4 𝑆 = (Scalar‘𝑈)
5 eqid 2737 . . . 4 (-g𝑆) = (-g𝑆)
6 lcfrlem1.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcfrlem1.m . . . 4 = (-g𝐷)
9 lcfrlem1.u . . . . 5 (𝜑𝑈 ∈ LVec)
10 lveclmod 21105 . . . . 5 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝑈 ∈ LMod)
12 lcfrlem1.e . . . 4 (𝜑𝐸𝐹)
13 eqid 2737 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
14 lcfrlem1.t . . . . 5 · = ( ·𝑠𝐷)
154lvecdrng 21104 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
169, 15syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
17 lcfrlem1.g . . . . . . . 8 (𝜑𝐺𝐹)
18 lcfrlem1.x . . . . . . . 8 (𝜑𝑋𝑉)
194, 13, 3, 6lflcl 39065 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
209, 17, 18, 19syl3anc 1373 . . . . . . 7 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
21 lcfrlem1.n . . . . . . 7 (𝜑 → (𝐺𝑋) ≠ 0 )
22 lcfrlem1.z . . . . . . . 8 0 = (0g𝑆)
23 lcfrlem1.i . . . . . . . 8 𝐼 = (invr𝑆)
2413, 22, 23drnginvrcl 20753 . . . . . . 7 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2516, 20, 21, 24syl3anc 1373 . . . . . 6 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
264, 13, 3, 6lflcl 39065 . . . . . . 7 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
279, 12, 18, 26syl3anc 1373 . . . . . 6 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
28 lcfrlem1.q . . . . . . 7 × = (.r𝑆)
294, 13, 28lmodmcl 20871 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3011, 25, 27, 29syl3anc 1373 . . . . 5 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
316, 4, 13, 7, 14, 11, 30, 17ldualvscl 39140 . . . 4 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
323, 4, 5, 6, 7, 8, 11, 12, 31, 18ldualvsubval 39158 . . 3 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)))
336, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18ldualvsval 39139 . . . . 5 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
34 eqid 2737 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3513, 22, 28, 34, 23drnginvrr 20757 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3616, 20, 21, 35syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3736oveq1d 7446 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((1r𝑆) × (𝐸𝑋)))
384lmodring 20866 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
3911, 38syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
4013, 28ringass 20250 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆))) → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4139, 20, 25, 27, 40syl13anc 1374 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4213, 28, 34ringlidm 20266 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4339, 27, 42syl2anc 584 . . . . . 6 (𝜑 → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4437, 41, 433eqtr3d 2785 . . . . 5 (𝜑 → ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))) = (𝐸𝑋))
4533, 44eqtrd 2777 . . . 4 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = (𝐸𝑋))
4645oveq2d 7447 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)) = ((𝐸𝑋)(-g𝑆)(𝐸𝑋)))
474lmodfgrp 20867 . . . . 5 (𝑈 ∈ LMod → 𝑆 ∈ Grp)
4811, 47syl 17 . . . 4 (𝜑𝑆 ∈ Grp)
4913, 22, 5grpsubid 19042 . . . 4 ((𝑆 ∈ Grp ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5048, 27, 49syl2anc 584 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5132, 46, 503eqtrd 2781 . 2 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = 0 )
522, 51eqtrid 2789 1 (𝜑 → (𝐻𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  Grpcgrp 18951  -gcsg 18953  1rcur 20178  Ringcrg 20230  invrcinvr 20387  DivRingcdr 20729  LModclmod 20858  LVecclvec 21101  LFnlclfn 39058  LDualcld 39124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lvec 21102  df-lfl 39059  df-ldual 39125
This theorem is referenced by:  lcfrlem3  41546
  Copyright terms: Public domain W3C validator