Step | Hyp | Ref
| Expression |
1 | | lcfrlem1.h |
. . 3
β’ π» = (πΈ β (((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ)) |
2 | 1 | fveq1i 6889 |
. 2
β’ (π»βπ) = ((πΈ β (((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ))βπ) |
3 | | lcfrlem1.v |
. . . 4
β’ π = (Baseβπ) |
4 | | lcfrlem1.s |
. . . 4
β’ π = (Scalarβπ) |
5 | | eqid 2732 |
. . . 4
β’
(-gβπ) = (-gβπ) |
6 | | lcfrlem1.f |
. . . 4
β’ πΉ = (LFnlβπ) |
7 | | lcfrlem1.d |
. . . 4
β’ π· = (LDualβπ) |
8 | | lcfrlem1.m |
. . . 4
β’ β =
(-gβπ·) |
9 | | lcfrlem1.u |
. . . . 5
β’ (π β π β LVec) |
10 | | lveclmod 20709 |
. . . . 5
β’ (π β LVec β π β LMod) |
11 | 9, 10 | syl 17 |
. . . 4
β’ (π β π β LMod) |
12 | | lcfrlem1.e |
. . . 4
β’ (π β πΈ β πΉ) |
13 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
14 | | lcfrlem1.t |
. . . . 5
β’ Β· = (
Β·π βπ·) |
15 | 4 | lvecdrng 20708 |
. . . . . . . 8
β’ (π β LVec β π β
DivRing) |
16 | 9, 15 | syl 17 |
. . . . . . 7
β’ (π β π β DivRing) |
17 | | lcfrlem1.g |
. . . . . . . 8
β’ (π β πΊ β πΉ) |
18 | | lcfrlem1.x |
. . . . . . . 8
β’ (π β π β π) |
19 | 4, 13, 3, 6 | lflcl 37922 |
. . . . . . . 8
β’ ((π β LVec β§ πΊ β πΉ β§ π β π) β (πΊβπ) β (Baseβπ)) |
20 | 9, 17, 18, 19 | syl3anc 1371 |
. . . . . . 7
β’ (π β (πΊβπ) β (Baseβπ)) |
21 | | lcfrlem1.n |
. . . . . . 7
β’ (π β (πΊβπ) β 0 ) |
22 | | lcfrlem1.z |
. . . . . . . 8
β’ 0 =
(0gβπ) |
23 | | lcfrlem1.i |
. . . . . . . 8
β’ πΌ = (invrβπ) |
24 | 13, 22, 23 | drnginvrcl 20329 |
. . . . . . 7
β’ ((π β DivRing β§ (πΊβπ) β (Baseβπ) β§ (πΊβπ) β 0 ) β (πΌβ(πΊβπ)) β (Baseβπ)) |
25 | 16, 20, 21, 24 | syl3anc 1371 |
. . . . . 6
β’ (π β (πΌβ(πΊβπ)) β (Baseβπ)) |
26 | 4, 13, 3, 6 | lflcl 37922 |
. . . . . . 7
β’ ((π β LVec β§ πΈ β πΉ β§ π β π) β (πΈβπ) β (Baseβπ)) |
27 | 9, 12, 18, 26 | syl3anc 1371 |
. . . . . 6
β’ (π β (πΈβπ) β (Baseβπ)) |
28 | | lcfrlem1.q |
. . . . . . 7
β’ Γ =
(.rβπ) |
29 | 4, 13, 28 | lmodmcl 20476 |
. . . . . 6
β’ ((π β LMod β§ (πΌβ(πΊβπ)) β (Baseβπ) β§ (πΈβπ) β (Baseβπ)) β ((πΌβ(πΊβπ)) Γ (πΈβπ)) β (Baseβπ)) |
30 | 11, 25, 27, 29 | syl3anc 1371 |
. . . . 5
β’ (π β ((πΌβ(πΊβπ)) Γ (πΈβπ)) β (Baseβπ)) |
31 | 6, 4, 13, 7, 14, 11, 30, 17 | ldualvscl 37997 |
. . . 4
β’ (π β (((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ) β πΉ) |
32 | 3, 4, 5, 6, 7, 8, 11, 12, 31, 18 | ldualvsubval 38015 |
. . 3
β’ (π β ((πΈ β (((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ))βπ) = ((πΈβπ)(-gβπ)((((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ)βπ))) |
33 | 6, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18 | ldualvsval 37996 |
. . . . 5
β’ (π β ((((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ)βπ) = ((πΊβπ) Γ ((πΌβ(πΊβπ)) Γ (πΈβπ)))) |
34 | | eqid 2732 |
. . . . . . . . 9
β’
(1rβπ) = (1rβπ) |
35 | 13, 22, 28, 34, 23 | drnginvrr 20333 |
. . . . . . . 8
β’ ((π β DivRing β§ (πΊβπ) β (Baseβπ) β§ (πΊβπ) β 0 ) β ((πΊβπ) Γ (πΌβ(πΊβπ))) = (1rβπ)) |
36 | 16, 20, 21, 35 | syl3anc 1371 |
. . . . . . 7
β’ (π β ((πΊβπ) Γ (πΌβ(πΊβπ))) = (1rβπ)) |
37 | 36 | oveq1d 7420 |
. . . . . 6
β’ (π β (((πΊβπ) Γ (πΌβ(πΊβπ))) Γ (πΈβπ)) = ((1rβπ) Γ (πΈβπ))) |
38 | 4 | lmodring 20471 |
. . . . . . . 8
β’ (π β LMod β π β Ring) |
39 | 11, 38 | syl 17 |
. . . . . . 7
β’ (π β π β Ring) |
40 | 13, 28 | ringass 20069 |
. . . . . . 7
β’ ((π β Ring β§ ((πΊβπ) β (Baseβπ) β§ (πΌβ(πΊβπ)) β (Baseβπ) β§ (πΈβπ) β (Baseβπ))) β (((πΊβπ) Γ (πΌβ(πΊβπ))) Γ (πΈβπ)) = ((πΊβπ) Γ ((πΌβ(πΊβπ)) Γ (πΈβπ)))) |
41 | 39, 20, 25, 27, 40 | syl13anc 1372 |
. . . . . 6
β’ (π β (((πΊβπ) Γ (πΌβ(πΊβπ))) Γ (πΈβπ)) = ((πΊβπ) Γ ((πΌβ(πΊβπ)) Γ (πΈβπ)))) |
42 | 13, 28, 34 | ringlidm 20079 |
. . . . . . 7
β’ ((π β Ring β§ (πΈβπ) β (Baseβπ)) β ((1rβπ) Γ (πΈβπ)) = (πΈβπ)) |
43 | 39, 27, 42 | syl2anc 584 |
. . . . . 6
β’ (π β
((1rβπ)
Γ
(πΈβπ)) = (πΈβπ)) |
44 | 37, 41, 43 | 3eqtr3d 2780 |
. . . . 5
β’ (π β ((πΊβπ) Γ ((πΌβ(πΊβπ)) Γ (πΈβπ))) = (πΈβπ)) |
45 | 33, 44 | eqtrd 2772 |
. . . 4
β’ (π β ((((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ)βπ) = (πΈβπ)) |
46 | 45 | oveq2d 7421 |
. . 3
β’ (π β ((πΈβπ)(-gβπ)((((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ)βπ)) = ((πΈβπ)(-gβπ)(πΈβπ))) |
47 | 4 | lmodfgrp 20472 |
. . . . 5
β’ (π β LMod β π β Grp) |
48 | 11, 47 | syl 17 |
. . . 4
β’ (π β π β Grp) |
49 | 13, 22, 5 | grpsubid 18903 |
. . . 4
β’ ((π β Grp β§ (πΈβπ) β (Baseβπ)) β ((πΈβπ)(-gβπ)(πΈβπ)) = 0 ) |
50 | 48, 27, 49 | syl2anc 584 |
. . 3
β’ (π β ((πΈβπ)(-gβπ)(πΈβπ)) = 0 ) |
51 | 32, 46, 50 | 3eqtrd 2776 |
. 2
β’ (π β ((πΈ β (((πΌβ(πΊβπ)) Γ (πΈβπ)) Β· πΊ))βπ) = 0 ) |
52 | 2, 51 | eqtrid 2784 |
1
β’ (π β (π»βπ) = 0 ) |