| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41704. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem1.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem1.q | ⊢ × = (.r‘𝑆) |
| lcfrlem1.z | ⊢ 0 = (0g‘𝑆) |
| lcfrlem1.i | ⊢ 𝐼 = (invr‘𝑆) |
| lcfrlem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lcfrlem1.m | ⊢ − = (-g‘𝐷) |
| lcfrlem1.u | ⊢ (𝜑 → 𝑈 ∈ LVec) |
| lcfrlem1.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lcfrlem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lcfrlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lcfrlem1.n | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
| lcfrlem1.h | ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) |
| Ref | Expression |
|---|---|
| lcfrlem1 | ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem1.h | . . 3 ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) | |
| 2 | 1 | fveq1i 6829 | . 2 ⊢ (𝐻‘𝑋) = ((𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))‘𝑋) |
| 3 | lcfrlem1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | lcfrlem1.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 5 | eqid 2733 | . . . 4 ⊢ (-g‘𝑆) = (-g‘𝑆) | |
| 6 | lcfrlem1.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 7 | lcfrlem1.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lcfrlem1.m | . . . 4 ⊢ − = (-g‘𝐷) | |
| 9 | lcfrlem1.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
| 10 | lveclmod 21042 | . . . . 5 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | lcfrlem1.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 13 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 14 | lcfrlem1.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 15 | 4 | lvecdrng 21041 | . . . . . . . 8 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
| 16 | 9, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 17 | lcfrlem1.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 18 | lcfrlem1.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 19 | 4, 13, 3, 6 | lflcl 39183 | . . . . . . . 8 ⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 20 | 9, 17, 18, 19 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 21 | lcfrlem1.n | . . . . . . 7 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) | |
| 22 | lcfrlem1.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑆) | |
| 23 | lcfrlem1.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝑆) | |
| 24 | 13, 22, 23 | drnginvrcl 20670 | . . . . . . 7 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 25 | 16, 20, 21, 24 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 26 | 4, 13, 3, 6 | lflcl 39183 | . . . . . . 7 ⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 27 | 9, 12, 18, 26 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 28 | lcfrlem1.q | . . . . . . 7 ⊢ × = (.r‘𝑆) | |
| 29 | 4, 13, 28 | lmodmcl 20808 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 30 | 11, 25, 27, 29 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 31 | 6, 4, 13, 7, 14, 11, 30, 17 | ldualvscl 39258 | . . . 4 ⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) |
| 32 | 3, 4, 5, 6, 7, 8, 11, 12, 31, 18 | ldualvsubval 39276 | . . 3 ⊢ (𝜑 → ((𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))‘𝑋) = ((𝐸‘𝑋)(-g‘𝑆)((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋))) |
| 33 | 6, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18 | ldualvsval 39257 | . . . . 5 ⊢ (𝜑 → ((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋) = ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)))) |
| 34 | eqid 2733 | . . . . . . . . 9 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 35 | 13, 22, 28, 34, 23 | drnginvrr 20674 | . . . . . . . 8 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → ((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) = (1r‘𝑆)) |
| 36 | 16, 20, 21, 35 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) = (1r‘𝑆)) |
| 37 | 36 | oveq1d 7367 | . . . . . 6 ⊢ (𝜑 → (((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) × (𝐸‘𝑋)) = ((1r‘𝑆) × (𝐸‘𝑋))) |
| 38 | 4 | lmodring 20803 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
| 39 | 11, 38 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 40 | 13, 28 | ringass 20173 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ ((𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆))) → (((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) × (𝐸‘𝑋)) = ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)))) |
| 41 | 39, 20, 25, 27, 40 | syl13anc 1374 | . . . . . 6 ⊢ (𝜑 → (((𝐺‘𝑋) × (𝐼‘(𝐺‘𝑋))) × (𝐸‘𝑋)) = ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)))) |
| 42 | 13, 28, 34 | ringlidm 20189 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((1r‘𝑆) × (𝐸‘𝑋)) = (𝐸‘𝑋)) |
| 43 | 39, 27, 42 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((1r‘𝑆) × (𝐸‘𝑋)) = (𝐸‘𝑋)) |
| 44 | 37, 41, 43 | 3eqtr3d 2776 | . . . . 5 ⊢ (𝜑 → ((𝐺‘𝑋) × ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋))) = (𝐸‘𝑋)) |
| 45 | 33, 44 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋) = (𝐸‘𝑋)) |
| 46 | 45 | oveq2d 7368 | . . 3 ⊢ (𝜑 → ((𝐸‘𝑋)(-g‘𝑆)((((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)‘𝑋)) = ((𝐸‘𝑋)(-g‘𝑆)(𝐸‘𝑋))) |
| 47 | 4 | lmodfgrp 20804 | . . . . 5 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Grp) |
| 48 | 11, 47 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 49 | 13, 22, 5 | grpsubid 18939 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐸‘𝑋)(-g‘𝑆)(𝐸‘𝑋)) = 0 ) |
| 50 | 48, 27, 49 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐸‘𝑋)(-g‘𝑆)(𝐸‘𝑋)) = 0 ) |
| 51 | 32, 46, 50 | 3eqtrd 2772 | . 2 ⊢ (𝜑 → ((𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))‘𝑋) = 0 ) |
| 52 | 2, 51 | eqtrid 2780 | 1 ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 Grpcgrp 18848 -gcsg 18850 1rcur 20101 Ringcrg 20153 invrcinvr 20307 DivRingcdr 20646 LModclmod 20795 LVecclvec 21038 LFnlclfn 39176 LDualcld 39242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-drng 20648 df-lmod 20797 df-lvec 21039 df-lfl 39177 df-ldual 39243 |
| This theorem is referenced by: lcfrlem3 41663 |
| Copyright terms: Public domain | W3C validator |