Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem1 Structured version   Visualization version   GIF version

Theorem lcfrlem1 38838
Description: Lemma for lcfr 38881. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
Assertion
Ref Expression
lcfrlem1 (𝜑 → (𝐻𝑋) = 0 )

Proof of Theorem lcfrlem1
StepHypRef Expression
1 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
21fveq1i 6646 . 2 (𝐻𝑋) = ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋)
3 lcfrlem1.v . . . 4 𝑉 = (Base‘𝑈)
4 lcfrlem1.s . . . 4 𝑆 = (Scalar‘𝑈)
5 eqid 2798 . . . 4 (-g𝑆) = (-g𝑆)
6 lcfrlem1.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcfrlem1.m . . . 4 = (-g𝐷)
9 lcfrlem1.u . . . . 5 (𝜑𝑈 ∈ LVec)
10 lveclmod 19871 . . . . 5 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝑈 ∈ LMod)
12 lcfrlem1.e . . . 4 (𝜑𝐸𝐹)
13 eqid 2798 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
14 lcfrlem1.t . . . . 5 · = ( ·𝑠𝐷)
154lvecdrng 19870 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
169, 15syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
17 lcfrlem1.g . . . . . . . 8 (𝜑𝐺𝐹)
18 lcfrlem1.x . . . . . . . 8 (𝜑𝑋𝑉)
194, 13, 3, 6lflcl 36360 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
209, 17, 18, 19syl3anc 1368 . . . . . . 7 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
21 lcfrlem1.n . . . . . . 7 (𝜑 → (𝐺𝑋) ≠ 0 )
22 lcfrlem1.z . . . . . . . 8 0 = (0g𝑆)
23 lcfrlem1.i . . . . . . . 8 𝐼 = (invr𝑆)
2413, 22, 23drnginvrcl 19512 . . . . . . 7 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2516, 20, 21, 24syl3anc 1368 . . . . . 6 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
264, 13, 3, 6lflcl 36360 . . . . . . 7 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
279, 12, 18, 26syl3anc 1368 . . . . . 6 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
28 lcfrlem1.q . . . . . . 7 × = (.r𝑆)
294, 13, 28lmodmcl 19639 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3011, 25, 27, 29syl3anc 1368 . . . . 5 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
316, 4, 13, 7, 14, 11, 30, 17ldualvscl 36435 . . . 4 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
323, 4, 5, 6, 7, 8, 11, 12, 31, 18ldualvsubval 36453 . . 3 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)))
336, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18ldualvsval 36434 . . . . 5 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
34 eqid 2798 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3513, 22, 28, 34, 23drnginvrr 19515 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3616, 20, 21, 35syl3anc 1368 . . . . . . 7 (𝜑 → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3736oveq1d 7150 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((1r𝑆) × (𝐸𝑋)))
384lmodring 19635 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
3911, 38syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
4013, 28ringass 19310 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆))) → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4139, 20, 25, 27, 40syl13anc 1369 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4213, 28, 34ringlidm 19317 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4339, 27, 42syl2anc 587 . . . . . 6 (𝜑 → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4437, 41, 433eqtr3d 2841 . . . . 5 (𝜑 → ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))) = (𝐸𝑋))
4533, 44eqtrd 2833 . . . 4 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = (𝐸𝑋))
4645oveq2d 7151 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)) = ((𝐸𝑋)(-g𝑆)(𝐸𝑋)))
474lmodfgrp 19636 . . . . 5 (𝑈 ∈ LMod → 𝑆 ∈ Grp)
4811, 47syl 17 . . . 4 (𝜑𝑆 ∈ Grp)
4913, 22, 5grpsubid 18175 . . . 4 ((𝑆 ∈ Grp ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5048, 27, 49syl2anc 587 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5132, 46, 503eqtrd 2837 . 2 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = 0 )
522, 51syl5eq 2845 1 (𝜑 → (𝐻𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  1rcur 19244  Ringcrg 19290  invrcinvr 19417  DivRingcdr 19495  LModclmod 19627  LVecclvec 19867  LFnlclfn 36353  LDualcld 36419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lvec 19868  df-lfl 36354  df-ldual 36420
This theorem is referenced by:  lcfrlem3  38840
  Copyright terms: Public domain W3C validator