Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem1 Structured version   Visualization version   GIF version

Theorem lcfrlem1 41561
Description: Lemma for lcfr 41604. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
Assertion
Ref Expression
lcfrlem1 (𝜑 → (𝐻𝑋) = 0 )

Proof of Theorem lcfrlem1
StepHypRef Expression
1 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
21fveq1i 6877 . 2 (𝐻𝑋) = ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋)
3 lcfrlem1.v . . . 4 𝑉 = (Base‘𝑈)
4 lcfrlem1.s . . . 4 𝑆 = (Scalar‘𝑈)
5 eqid 2735 . . . 4 (-g𝑆) = (-g𝑆)
6 lcfrlem1.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcfrlem1.m . . . 4 = (-g𝐷)
9 lcfrlem1.u . . . . 5 (𝜑𝑈 ∈ LVec)
10 lveclmod 21064 . . . . 5 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
119, 10syl 17 . . . 4 (𝜑𝑈 ∈ LMod)
12 lcfrlem1.e . . . 4 (𝜑𝐸𝐹)
13 eqid 2735 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
14 lcfrlem1.t . . . . 5 · = ( ·𝑠𝐷)
154lvecdrng 21063 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
169, 15syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
17 lcfrlem1.g . . . . . . . 8 (𝜑𝐺𝐹)
18 lcfrlem1.x . . . . . . . 8 (𝜑𝑋𝑉)
194, 13, 3, 6lflcl 39082 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
209, 17, 18, 19syl3anc 1373 . . . . . . 7 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
21 lcfrlem1.n . . . . . . 7 (𝜑 → (𝐺𝑋) ≠ 0 )
22 lcfrlem1.z . . . . . . . 8 0 = (0g𝑆)
23 lcfrlem1.i . . . . . . . 8 𝐼 = (invr𝑆)
2413, 22, 23drnginvrcl 20713 . . . . . . 7 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2516, 20, 21, 24syl3anc 1373 . . . . . 6 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
264, 13, 3, 6lflcl 39082 . . . . . . 7 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
279, 12, 18, 26syl3anc 1373 . . . . . 6 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
28 lcfrlem1.q . . . . . . 7 × = (.r𝑆)
294, 13, 28lmodmcl 20830 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3011, 25, 27, 29syl3anc 1373 . . . . 5 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
316, 4, 13, 7, 14, 11, 30, 17ldualvscl 39157 . . . 4 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
323, 4, 5, 6, 7, 8, 11, 12, 31, 18ldualvsubval 39175 . . 3 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)))
336, 3, 4, 13, 28, 7, 14, 9, 30, 17, 18ldualvsval 39156 . . . . 5 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
34 eqid 2735 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
3513, 22, 28, 34, 23drnginvrr 20717 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3616, 20, 21, 35syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐺𝑋) × (𝐼‘(𝐺𝑋))) = (1r𝑆))
3736oveq1d 7420 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((1r𝑆) × (𝐸𝑋)))
384lmodring 20825 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
3911, 38syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
4013, 28ringass 20213 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆))) → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4139, 20, 25, 27, 40syl13anc 1374 . . . . . 6 (𝜑 → (((𝐺𝑋) × (𝐼‘(𝐺𝑋))) × (𝐸𝑋)) = ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))))
4213, 28, 34ringlidm 20229 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4339, 27, 42syl2anc 584 . . . . . 6 (𝜑 → ((1r𝑆) × (𝐸𝑋)) = (𝐸𝑋))
4437, 41, 433eqtr3d 2778 . . . . 5 (𝜑 → ((𝐺𝑋) × ((𝐼‘(𝐺𝑋)) × (𝐸𝑋))) = (𝐸𝑋))
4533, 44eqtrd 2770 . . . 4 (𝜑 → ((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋) = (𝐸𝑋))
4645oveq2d 7421 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)((((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)‘𝑋)) = ((𝐸𝑋)(-g𝑆)(𝐸𝑋)))
474lmodfgrp 20826 . . . . 5 (𝑈 ∈ LMod → 𝑆 ∈ Grp)
4811, 47syl 17 . . . 4 (𝜑𝑆 ∈ Grp)
4913, 22, 5grpsubid 19007 . . . 4 ((𝑆 ∈ Grp ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5048, 27, 49syl2anc 584 . . 3 (𝜑 → ((𝐸𝑋)(-g𝑆)(𝐸𝑋)) = 0 )
5132, 46, 503eqtrd 2774 . 2 (𝜑 → ((𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))‘𝑋) = 0 )
522, 51eqtrid 2782 1 (𝜑 → (𝐻𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  Grpcgrp 18916  -gcsg 18918  1rcur 20141  Ringcrg 20193  invrcinvr 20347  DivRingcdr 20689  LModclmod 20817  LVecclvec 21060  LFnlclfn 39075  LDualcld 39141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lvec 21061  df-lfl 39076  df-ldual 39142
This theorem is referenced by:  lcfrlem3  41563
  Copyright terms: Public domain W3C validator