Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapsub Structured version   Visualization version   GIF version

Theorem hdmapsub 41559
Description: Part of proof of part 12 in [Baer] p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap12c.h 𝐻 = (LHyp‘𝐾)
hdmap12c.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap12c.v 𝑉 = (Base‘𝑈)
hdmap12c.m = (-g𝑈)
hdmap12c.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap12c.n 𝑁 = (-g𝐶)
hdmap12c.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap12c.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap12c.x (𝜑𝑋𝑉)
hdmap12c.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmapsub (𝜑 → (𝑆‘(𝑋 𝑌)) = ((𝑆𝑋)𝑁(𝑆𝑌)))

Proof of Theorem hdmapsub
StepHypRef Expression
1 hdmap12c.x . . . . 5 (𝜑𝑋𝑉)
2 hdmap12c.y . . . . 5 (𝜑𝑌𝑉)
3 hdmap12c.v . . . . . 6 𝑉 = (Base‘𝑈)
4 eqid 2726 . . . . . 6 (+g𝑈) = (+g𝑈)
5 eqid 2726 . . . . . 6 (invg𝑈) = (invg𝑈)
6 hdmap12c.m . . . . . 6 = (-g𝑈)
73, 4, 5, 6grpsubval 18975 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
81, 2, 7syl2anc 582 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
98fveq2d 6897 . . 3 (𝜑 → (𝑆‘(𝑋 𝑌)) = (𝑆‘(𝑋(+g𝑈)((invg𝑈)‘𝑌))))
10 hdmap12c.h . . . 4 𝐻 = (LHyp‘𝐾)
11 hdmap12c.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 hdmap12c.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
13 eqid 2726 . . . 4 (+g𝐶) = (+g𝐶)
14 hdmap12c.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
15 hdmap12c.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1610, 11, 15dvhlmod 40822 . . . . 5 (𝜑𝑈 ∈ LMod)
173, 5lmodvnegcl 20875 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → ((invg𝑈)‘𝑌) ∈ 𝑉)
1816, 2, 17syl2anc 582 . . . 4 (𝜑 → ((invg𝑈)‘𝑌) ∈ 𝑉)
1910, 11, 3, 4, 12, 13, 14, 15, 1, 18hdmapadd 41555 . . 3 (𝜑 → (𝑆‘(𝑋(+g𝑈)((invg𝑈)‘𝑌))) = ((𝑆𝑋)(+g𝐶)(𝑆‘((invg𝑈)‘𝑌))))
20 eqid 2726 . . . . 5 (invg𝐶) = (invg𝐶)
2110, 11, 3, 5, 12, 20, 14, 15, 2hdmapneg 41558 . . . 4 (𝜑 → (𝑆‘((invg𝑈)‘𝑌)) = ((invg𝐶)‘(𝑆𝑌)))
2221oveq2d 7432 . . 3 (𝜑 → ((𝑆𝑋)(+g𝐶)(𝑆‘((invg𝑈)‘𝑌))) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
239, 19, 223eqtrd 2770 . 2 (𝜑 → (𝑆‘(𝑋 𝑌)) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
24 eqid 2726 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2510, 11, 3, 12, 24, 14, 15, 1hdmapcl 41542 . . 3 (𝜑 → (𝑆𝑋) ∈ (Base‘𝐶))
2610, 11, 3, 12, 24, 14, 15, 2hdmapcl 41542 . . 3 (𝜑 → (𝑆𝑌) ∈ (Base‘𝐶))
27 hdmap12c.n . . . 4 𝑁 = (-g𝐶)
2824, 13, 20, 27grpsubval 18975 . . 3 (((𝑆𝑋) ∈ (Base‘𝐶) ∧ (𝑆𝑌) ∈ (Base‘𝐶)) → ((𝑆𝑋)𝑁(𝑆𝑌)) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
2925, 26, 28syl2anc 582 . 2 (𝜑 → ((𝑆𝑋)𝑁(𝑆𝑌)) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
3023, 29eqtr4d 2769 1 (𝜑 → (𝑆‘(𝑋 𝑌)) = ((𝑆𝑋)𝑁(𝑆𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cfv 6546  (class class class)co 7416  Basecbs 17208  +gcplusg 17261  invgcminusg 18924  -gcsg 18925  LModclmod 20832  HLchlt 39061  LHypclh 39696  DVecHcdvh 40790  LCDualclcd 41298  HDMapchdma 41504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-riotaBAD 38664
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-0g 17451  df-mre 17594  df-mrc 17595  df-acs 17597  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-p1 18446  df-lat 18452  df-clat 18519  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-subg 19113  df-cntz 19307  df-oppg 19336  df-lsm 19630  df-cmn 19776  df-abl 19777  df-mgp 20114  df-rng 20132  df-ur 20161  df-ring 20214  df-oppr 20312  df-dvdsr 20335  df-unit 20336  df-invr 20366  df-dvr 20379  df-nzr 20491  df-rlreg 20668  df-domn 20669  df-drng 20705  df-lmod 20834  df-lss 20905  df-lsp 20945  df-lvec 21077  df-lsatoms 38687  df-lshyp 38688  df-lcv 38730  df-lfl 38769  df-lkr 38797  df-ldual 38835  df-oposet 38887  df-ol 38889  df-oml 38890  df-covers 38977  df-ats 38978  df-atl 39009  df-cvlat 39033  df-hlat 39062  df-llines 39210  df-lplanes 39211  df-lvols 39212  df-lines 39213  df-psubsp 39215  df-pmap 39216  df-padd 39508  df-lhyp 39700  df-laut 39701  df-ldil 39816  df-ltrn 39817  df-trl 39871  df-tgrp 40455  df-tendo 40467  df-edring 40469  df-dveca 40715  df-disoa 40741  df-dvech 40791  df-dib 40851  df-dic 40885  df-dih 40941  df-doch 41060  df-djh 41107  df-lcdual 41299  df-mapd 41337  df-hvmap 41469  df-hdmap1 41505  df-hdmap 41506
This theorem is referenced by:  hdmap11  41560  hdmapinvlem3  41632
  Copyright terms: Public domain W3C validator