Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapsub Structured version   Visualization version   GIF version

Theorem hdmapsub 38965
 Description: Part of proof of part 12 in [Baer] p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015.)
Hypotheses
Ref Expression
hdmap12c.h 𝐻 = (LHyp‘𝐾)
hdmap12c.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap12c.v 𝑉 = (Base‘𝑈)
hdmap12c.m = (-g𝑈)
hdmap12c.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap12c.n 𝑁 = (-g𝐶)
hdmap12c.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap12c.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap12c.x (𝜑𝑋𝑉)
hdmap12c.y (𝜑𝑌𝑉)
Assertion
Ref Expression
hdmapsub (𝜑 → (𝑆‘(𝑋 𝑌)) = ((𝑆𝑋)𝑁(𝑆𝑌)))

Proof of Theorem hdmapsub
StepHypRef Expression
1 hdmap12c.x . . . . 5 (𝜑𝑋𝑉)
2 hdmap12c.y . . . . 5 (𝜑𝑌𝑉)
3 hdmap12c.v . . . . . 6 𝑉 = (Base‘𝑈)
4 eqid 2819 . . . . . 6 (+g𝑈) = (+g𝑈)
5 eqid 2819 . . . . . 6 (invg𝑈) = (invg𝑈)
6 hdmap12c.m . . . . . 6 = (-g𝑈)
73, 4, 5, 6grpsubval 18141 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
81, 2, 7syl2anc 586 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
98fveq2d 6667 . . 3 (𝜑 → (𝑆‘(𝑋 𝑌)) = (𝑆‘(𝑋(+g𝑈)((invg𝑈)‘𝑌))))
10 hdmap12c.h . . . 4 𝐻 = (LHyp‘𝐾)
11 hdmap12c.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
12 hdmap12c.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
13 eqid 2819 . . . 4 (+g𝐶) = (+g𝐶)
14 hdmap12c.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
15 hdmap12c.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1610, 11, 15dvhlmod 38228 . . . . 5 (𝜑𝑈 ∈ LMod)
173, 5lmodvnegcl 19667 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → ((invg𝑈)‘𝑌) ∈ 𝑉)
1816, 2, 17syl2anc 586 . . . 4 (𝜑 → ((invg𝑈)‘𝑌) ∈ 𝑉)
1910, 11, 3, 4, 12, 13, 14, 15, 1, 18hdmapadd 38961 . . 3 (𝜑 → (𝑆‘(𝑋(+g𝑈)((invg𝑈)‘𝑌))) = ((𝑆𝑋)(+g𝐶)(𝑆‘((invg𝑈)‘𝑌))))
20 eqid 2819 . . . . 5 (invg𝐶) = (invg𝐶)
2110, 11, 3, 5, 12, 20, 14, 15, 2hdmapneg 38964 . . . 4 (𝜑 → (𝑆‘((invg𝑈)‘𝑌)) = ((invg𝐶)‘(𝑆𝑌)))
2221oveq2d 7164 . . 3 (𝜑 → ((𝑆𝑋)(+g𝐶)(𝑆‘((invg𝑈)‘𝑌))) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
239, 19, 223eqtrd 2858 . 2 (𝜑 → (𝑆‘(𝑋 𝑌)) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
24 eqid 2819 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2510, 11, 3, 12, 24, 14, 15, 1hdmapcl 38948 . . 3 (𝜑 → (𝑆𝑋) ∈ (Base‘𝐶))
2610, 11, 3, 12, 24, 14, 15, 2hdmapcl 38948 . . 3 (𝜑 → (𝑆𝑌) ∈ (Base‘𝐶))
27 hdmap12c.n . . . 4 𝑁 = (-g𝐶)
2824, 13, 20, 27grpsubval 18141 . . 3 (((𝑆𝑋) ∈ (Base‘𝐶) ∧ (𝑆𝑌) ∈ (Base‘𝐶)) → ((𝑆𝑋)𝑁(𝑆𝑌)) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
2925, 26, 28syl2anc 586 . 2 (𝜑 → ((𝑆𝑋)𝑁(𝑆𝑌)) = ((𝑆𝑋)(+g𝐶)((invg𝐶)‘(𝑆𝑌))))
3023, 29eqtr4d 2857 1 (𝜑 → (𝑆‘(𝑋 𝑌)) = ((𝑆𝑋)𝑁(𝑆𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  +gcplusg 16557  invgcminusg 18096  -gcsg 18097  LModclmod 19626  HLchlt 36468  LHypclh 37102  DVecHcdvh 38196  LCDualclcd 38704  HDMapchdma 38910 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36071 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-undef 7931  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867  df-lsatoms 36094  df-lshyp 36095  df-lcv 36137  df-lfl 36176  df-lkr 36204  df-ldual 36242  df-oposet 36294  df-ol 36296  df-oml 36297  df-covers 36384  df-ats 36385  df-atl 36416  df-cvlat 36440  df-hlat 36469  df-llines 36616  df-lplanes 36617  df-lvols 36618  df-lines 36619  df-psubsp 36621  df-pmap 36622  df-padd 36914  df-lhyp 37106  df-laut 37107  df-ldil 37222  df-ltrn 37223  df-trl 37277  df-tgrp 37861  df-tendo 37873  df-edring 37875  df-dveca 38121  df-disoa 38147  df-dvech 38197  df-dib 38257  df-dic 38291  df-dih 38347  df-doch 38466  df-djh 38513  df-lcdual 38705  df-mapd 38743  df-hvmap 38875  df-hdmap1 38911  df-hdmap 38912 This theorem is referenced by:  hdmap11  38966  hdmapinvlem3  39038
 Copyright terms: Public domain W3C validator