| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsntrim | Structured version Visualization version GIF version | ||
| Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lspsntrim.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsntrim.s | ⊢ − = (-g‘𝑊) |
| lspsntrim.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lspsntrim.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsntrim | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsntrim.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
| 3 | 1, 2 | lmodvnegcl 20816 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((invg‘𝑊)‘𝑌) ∈ 𝑉) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝑊)‘𝑌) ∈ 𝑉) |
| 5 | eqid 2730 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 6 | lspsntrim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 7 | lspsntrim.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 8 | 1, 5, 6, 7 | lspsntri 21011 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ((invg‘𝑊)‘𝑌) ∈ 𝑉) → (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
| 9 | 4, 8 | syld3an3 1411 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
| 10 | lspsntrim.s | . . . . . 6 ⊢ − = (-g‘𝑊) | |
| 11 | 1, 5, 2, 10 | grpsubval 18924 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))) |
| 12 | 11 | sneqd 4604 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(𝑋 − 𝑌)} = {(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) |
| 13 | 12 | fveq2d 6865 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))})) |
| 14 | 13 | 3adant1 1130 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))})) |
| 15 | 1, 2, 6 | lspsnneg 20919 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑌)}) = (𝑁‘{𝑌})) |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑌)}) = (𝑁‘{𝑌})) |
| 17 | 16 | eqcomd 2736 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) = (𝑁‘{((invg‘𝑊)‘𝑌)})) |
| 18 | 17 | oveq2d 7406 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
| 19 | 9, 14, 18 | 3sstr4d 4005 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 invgcminusg 18873 -gcsg 18874 LSSumclsm 19571 LModclmod 20773 LSpanclspn 20884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-lsp 20885 |
| This theorem is referenced by: mapdpglem1 41673 baerlem3lem2 41711 baerlem5alem2 41712 baerlem5blem2 41713 |
| Copyright terms: Public domain | W3C validator |