MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel6 Structured version   Visualization version   GIF version

Theorem lspsnel6 20471
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v 𝑉 = (Baseβ€˜π‘Š)
lspsnel5.s 𝑆 = (LSubSpβ€˜π‘Š)
lspsnel5.n 𝑁 = (LSpanβ€˜π‘Š)
lspsnel5.w (πœ‘ β†’ π‘Š ∈ LMod)
lspsnel5.a (πœ‘ β†’ π‘ˆ ∈ 𝑆)
Assertion
Ref Expression
lspsnel6 (πœ‘ β†’ (𝑋 ∈ π‘ˆ ↔ (𝑋 ∈ 𝑉 ∧ (π‘β€˜{𝑋}) βŠ† π‘ˆ)))

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.a . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑆)
2 lspsnel5.v . . . . 5 𝑉 = (Baseβ€˜π‘Š)
3 lspsnel5.s . . . . 5 𝑆 = (LSubSpβ€˜π‘Š)
42, 3lssel 20414 . . . 4 ((π‘ˆ ∈ 𝑆 ∧ 𝑋 ∈ π‘ˆ) β†’ 𝑋 ∈ 𝑉)
51, 4sylan 581 . . 3 ((πœ‘ ∧ 𝑋 ∈ π‘ˆ) β†’ 𝑋 ∈ 𝑉)
6 lspsnel5.w . . . . 5 (πœ‘ β†’ π‘Š ∈ LMod)
76adantr 482 . . . 4 ((πœ‘ ∧ 𝑋 ∈ π‘ˆ) β†’ π‘Š ∈ LMod)
81adantr 482 . . . 4 ((πœ‘ ∧ 𝑋 ∈ π‘ˆ) β†’ π‘ˆ ∈ 𝑆)
9 simpr 486 . . . 4 ((πœ‘ ∧ 𝑋 ∈ π‘ˆ) β†’ 𝑋 ∈ π‘ˆ)
10 lspsnel5.n . . . . 5 𝑁 = (LSpanβ€˜π‘Š)
113, 10lspsnss 20467 . . . 4 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑋 ∈ π‘ˆ) β†’ (π‘β€˜{𝑋}) βŠ† π‘ˆ)
127, 8, 9, 11syl3anc 1372 . . 3 ((πœ‘ ∧ 𝑋 ∈ π‘ˆ) β†’ (π‘β€˜{𝑋}) βŠ† π‘ˆ)
135, 12jca 513 . 2 ((πœ‘ ∧ 𝑋 ∈ π‘ˆ) β†’ (𝑋 ∈ 𝑉 ∧ (π‘β€˜{𝑋}) βŠ† π‘ˆ))
142, 10lspsnid 20470 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ (π‘β€˜{𝑋}))
156, 14sylan 581 . . . 4 ((πœ‘ ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ (π‘β€˜{𝑋}))
16 ssel 3942 . . . 4 ((π‘β€˜{𝑋}) βŠ† π‘ˆ β†’ (𝑋 ∈ (π‘β€˜{𝑋}) β†’ 𝑋 ∈ π‘ˆ))
1715, 16syl5com 31 . . 3 ((πœ‘ ∧ 𝑋 ∈ 𝑉) β†’ ((π‘β€˜{𝑋}) βŠ† π‘ˆ β†’ 𝑋 ∈ π‘ˆ))
1817impr 456 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝑉 ∧ (π‘β€˜{𝑋}) βŠ† π‘ˆ)) β†’ 𝑋 ∈ π‘ˆ)
1913, 18impbida 800 1 (πœ‘ β†’ (𝑋 ∈ π‘ˆ ↔ (𝑋 ∈ 𝑉 ∧ (π‘β€˜{𝑋}) βŠ† π‘ˆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βŠ† wss 3915  {csn 4591  β€˜cfv 6501  Basecbs 17090  LModclmod 20338  LSubSpclss 20408  LSpanclspn 20448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-0g 17330  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-grp 18758  df-lmod 20340  df-lss 20409  df-lsp 20449
This theorem is referenced by:  lspsnel5  20472  lsmelval2  20562  dihjat1lem  39920
  Copyright terms: Public domain W3C validator