![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel6 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lspsnel5.v | β’ π = (Baseβπ) |
lspsnel5.s | β’ π = (LSubSpβπ) |
lspsnel5.n | β’ π = (LSpanβπ) |
lspsnel5.w | β’ (π β π β LMod) |
lspsnel5.a | β’ (π β π β π) |
Ref | Expression |
---|---|
lspsnel6 | β’ (π β (π β π β (π β π β§ (πβ{π}) β π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5.a | . . . 4 β’ (π β π β π) | |
2 | lspsnel5.v | . . . . 5 β’ π = (Baseβπ) | |
3 | lspsnel5.s | . . . . 5 β’ π = (LSubSpβπ) | |
4 | 2, 3 | lssel 20835 | . . . 4 β’ ((π β π β§ π β π) β π β π) |
5 | 1, 4 | sylan 578 | . . 3 β’ ((π β§ π β π) β π β π) |
6 | lspsnel5.w | . . . . 5 β’ (π β π β LMod) | |
7 | 6 | adantr 479 | . . . 4 β’ ((π β§ π β π) β π β LMod) |
8 | 1 | adantr 479 | . . . 4 β’ ((π β§ π β π) β π β π) |
9 | simpr 483 | . . . 4 β’ ((π β§ π β π) β π β π) | |
10 | lspsnel5.n | . . . . 5 β’ π = (LSpanβπ) | |
11 | 3, 10 | lspsnss 20888 | . . . 4 β’ ((π β LMod β§ π β π β§ π β π) β (πβ{π}) β π) |
12 | 7, 8, 9, 11 | syl3anc 1368 | . . 3 β’ ((π β§ π β π) β (πβ{π}) β π) |
13 | 5, 12 | jca 510 | . 2 β’ ((π β§ π β π) β (π β π β§ (πβ{π}) β π)) |
14 | 2, 10 | lspsnid 20891 | . . . . 5 β’ ((π β LMod β§ π β π) β π β (πβ{π})) |
15 | 6, 14 | sylan 578 | . . . 4 β’ ((π β§ π β π) β π β (πβ{π})) |
16 | ssel 3975 | . . . 4 β’ ((πβ{π}) β π β (π β (πβ{π}) β π β π)) | |
17 | 15, 16 | syl5com 31 | . . 3 β’ ((π β§ π β π) β ((πβ{π}) β π β π β π)) |
18 | 17 | impr 453 | . 2 β’ ((π β§ (π β π β§ (πβ{π}) β π)) β π β π) |
19 | 13, 18 | impbida 799 | 1 β’ (π β (π β π β (π β π β§ (πβ{π}) β π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3949 {csn 4632 βcfv 6553 Basecbs 17189 LModclmod 20757 LSubSpclss 20829 LSpanclspn 20869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-0g 17432 df-mgm 18609 df-sgrp 18688 df-mnd 18704 df-grp 18907 df-lmod 20759 df-lss 20830 df-lsp 20870 |
This theorem is referenced by: lspsnel5 20893 lsmelval2 20984 dihjat1lem 40941 |
Copyright terms: Public domain | W3C validator |