![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel6 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lspsnel5.v | β’ π = (Baseβπ) |
lspsnel5.s | β’ π = (LSubSpβπ) |
lspsnel5.n | β’ π = (LSpanβπ) |
lspsnel5.w | β’ (π β π β LMod) |
lspsnel5.a | β’ (π β π β π) |
Ref | Expression |
---|---|
lspsnel6 | β’ (π β (π β π β (π β π β§ (πβ{π}) β π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5.a | . . . 4 β’ (π β π β π) | |
2 | lspsnel5.v | . . . . 5 β’ π = (Baseβπ) | |
3 | lspsnel5.s | . . . . 5 β’ π = (LSubSpβπ) | |
4 | 2, 3 | lssel 20784 | . . . 4 β’ ((π β π β§ π β π) β π β π) |
5 | 1, 4 | sylan 579 | . . 3 β’ ((π β§ π β π) β π β π) |
6 | lspsnel5.w | . . . . 5 β’ (π β π β LMod) | |
7 | 6 | adantr 480 | . . . 4 β’ ((π β§ π β π) β π β LMod) |
8 | 1 | adantr 480 | . . . 4 β’ ((π β§ π β π) β π β π) |
9 | simpr 484 | . . . 4 β’ ((π β§ π β π) β π β π) | |
10 | lspsnel5.n | . . . . 5 β’ π = (LSpanβπ) | |
11 | 3, 10 | lspsnss 20837 | . . . 4 β’ ((π β LMod β§ π β π β§ π β π) β (πβ{π}) β π) |
12 | 7, 8, 9, 11 | syl3anc 1368 | . . 3 β’ ((π β§ π β π) β (πβ{π}) β π) |
13 | 5, 12 | jca 511 | . 2 β’ ((π β§ π β π) β (π β π β§ (πβ{π}) β π)) |
14 | 2, 10 | lspsnid 20840 | . . . . 5 β’ ((π β LMod β§ π β π) β π β (πβ{π})) |
15 | 6, 14 | sylan 579 | . . . 4 β’ ((π β§ π β π) β π β (πβ{π})) |
16 | ssel 3970 | . . . 4 β’ ((πβ{π}) β π β (π β (πβ{π}) β π β π)) | |
17 | 15, 16 | syl5com 31 | . . 3 β’ ((π β§ π β π) β ((πβ{π}) β π β π β π)) |
18 | 17 | impr 454 | . 2 β’ ((π β§ (π β π β§ (πβ{π}) β π)) β π β π) |
19 | 13, 18 | impbida 798 | 1 β’ (π β (π β π β (π β π β§ (πβ{π}) β π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3943 {csn 4623 βcfv 6537 Basecbs 17153 LModclmod 20706 LSubSpclss 20778 LSpanclspn 20818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-lmod 20708 df-lss 20779 df-lsp 20819 |
This theorem is referenced by: lspsnel5 20842 lsmelval2 20933 dihjat1lem 40812 |
Copyright terms: Public domain | W3C validator |