MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnel6 Structured version   Visualization version   GIF version

Theorem lspsnel6 19827
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lspsnel5.v 𝑉 = (Base‘𝑊)
lspsnel5.s 𝑆 = (LSubSp‘𝑊)
lspsnel5.n 𝑁 = (LSpan‘𝑊)
lspsnel5.w (𝜑𝑊 ∈ LMod)
lspsnel5.a (𝜑𝑈𝑆)
Assertion
Ref Expression
lspsnel6 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))

Proof of Theorem lspsnel6
StepHypRef Expression
1 lspsnel5.a . . . 4 (𝜑𝑈𝑆)
2 lspsnel5.v . . . . 5 𝑉 = (Base‘𝑊)
3 lspsnel5.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3lssel 19770 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋𝑉)
51, 4sylan 584 . . 3 ((𝜑𝑋𝑈) → 𝑋𝑉)
6 lspsnel5.w . . . . 5 (𝜑𝑊 ∈ LMod)
76adantr 485 . . . 4 ((𝜑𝑋𝑈) → 𝑊 ∈ LMod)
81adantr 485 . . . 4 ((𝜑𝑋𝑈) → 𝑈𝑆)
9 simpr 489 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
10 lspsnel5.n . . . . 5 𝑁 = (LSpan‘𝑊)
113, 10lspsnss 19823 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
127, 8, 9, 11syl3anc 1369 . . 3 ((𝜑𝑋𝑈) → (𝑁‘{𝑋}) ⊆ 𝑈)
135, 12jca 516 . 2 ((𝜑𝑋𝑈) → (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))
142, 10lspsnid 19826 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
156, 14sylan 584 . . . 4 ((𝜑𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
16 ssel 3886 . . . 4 ((𝑁‘{𝑋}) ⊆ 𝑈 → (𝑋 ∈ (𝑁‘{𝑋}) → 𝑋𝑈))
1715, 16syl5com 31 . . 3 ((𝜑𝑋𝑉) → ((𝑁‘{𝑋}) ⊆ 𝑈𝑋𝑈))
1817impr 459 . 2 ((𝜑 ∧ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)) → 𝑋𝑈)
1913, 18impbida 801 1 (𝜑 → (𝑋𝑈 ↔ (𝑋𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wss 3859  {csn 4523  cfv 6336  Basecbs 16534  LModclmod 19695  LSubSpclss 19764  LSpanclspn 19804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-0g 16766  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-grp 18165  df-lmod 19697  df-lss 19765  df-lsp 19805
This theorem is referenced by:  lspsnel5  19828  lsmelval2  19918  dihjat1lem  38997
  Copyright terms: Public domain W3C validator