MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssp Structured version   Visualization version   GIF version

Theorem lspssp 20872
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.)
Hypotheses
Ref Expression
lspssp.s 𝑆 = (LSubSpβ€˜π‘Š)
lspssp.n 𝑁 = (LSpanβ€˜π‘Š)
Assertion
Ref Expression
lspssp ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑇 βŠ† π‘ˆ) β†’ (π‘β€˜π‘‡) βŠ† π‘ˆ)

Proof of Theorem lspssp
StepHypRef Expression
1 eqid 2728 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
2 lspssp.s . . . 4 𝑆 = (LSubSpβ€˜π‘Š)
31, 2lssss 20820 . . 3 (π‘ˆ ∈ 𝑆 β†’ π‘ˆ βŠ† (Baseβ€˜π‘Š))
4 lspssp.n . . . 4 𝑁 = (LSpanβ€˜π‘Š)
51, 4lspss 20868 . . 3 ((π‘Š ∈ LMod ∧ π‘ˆ βŠ† (Baseβ€˜π‘Š) ∧ 𝑇 βŠ† π‘ˆ) β†’ (π‘β€˜π‘‡) βŠ† (π‘β€˜π‘ˆ))
63, 5syl3an2 1162 . 2 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑇 βŠ† π‘ˆ) β†’ (π‘β€˜π‘‡) βŠ† (π‘β€˜π‘ˆ))
72, 4lspid 20866 . . 3 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆) β†’ (π‘β€˜π‘ˆ) = π‘ˆ)
873adant3 1130 . 2 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑇 βŠ† π‘ˆ) β†’ (π‘β€˜π‘ˆ) = π‘ˆ)
96, 8sseqtrd 4020 1 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑆 ∧ 𝑇 βŠ† π‘ˆ) β†’ (π‘β€˜π‘‡) βŠ† π‘ˆ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   βŠ† wss 3947  β€˜cfv 6548  Basecbs 17180  LModclmod 20743  LSubSpclss 20815  LSpanclspn 20855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-lmod 20745  df-lss 20816  df-lsp 20856
This theorem is referenced by:  lspsnss  20874  lspprss  20876  lsp0  20893  lsslsp  20899  lsslspOLD  20900  lmhmlsp  20934  lspextmo  20941  lsmsp  20971  lsppratlem3  21037  lsppratlem4  21038  islbs3  21043  rspssp  21135  ocvlsp  21608  frlmsslsp  21730  ply1degltdimlem  33320  lspsslco  47505
  Copyright terms: Public domain W3C validator