| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspssp | Structured version Visualization version GIF version | ||
| Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.) |
| Ref | Expression |
|---|---|
| lspssp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspssp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspssp | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lspssp.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 1, 2 | lssss 20857 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
| 4 | lspssp.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 1, 4 | lspss 20905 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊) ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
| 6 | 3, 5 | syl3an2 1164 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
| 7 | 2, 4 | lspid 20903 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| 8 | 7 | 3adant3 1132 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = 𝑈) |
| 9 | 6, 8 | sseqtrd 3974 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 Basecbs 17138 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-lmod 20783 df-lss 20853 df-lsp 20893 |
| This theorem is referenced by: lspsnss 20911 lspprss 20913 lsp0 20930 lsslsp 20936 lsslspOLD 20937 lmhmlsp 20971 lspextmo 20978 lsmsp 21008 lsppratlem3 21074 lsppratlem4 21075 islbs3 21080 rspssp 21164 ocvlsp 21601 frlmsslsp 21721 ply1degltdimlem 33597 lspsslco 48426 |
| Copyright terms: Public domain | W3C validator |