![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspssp | Structured version Visualization version GIF version |
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.) |
Ref | Expression |
---|---|
lspssp.s | β’ π = (LSubSpβπ) |
lspssp.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspssp | β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | lspssp.s | . . . 4 β’ π = (LSubSpβπ) | |
3 | 1, 2 | lssss 20547 | . . 3 β’ (π β π β π β (Baseβπ)) |
4 | lspssp.n | . . . 4 β’ π = (LSpanβπ) | |
5 | 1, 4 | lspss 20595 | . . 3 β’ ((π β LMod β§ π β (Baseβπ) β§ π β π) β (πβπ) β (πβπ)) |
6 | 3, 5 | syl3an2 1165 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β (πβπ)) |
7 | 2, 4 | lspid 20593 | . . 3 β’ ((π β LMod β§ π β π) β (πβπ) = π) |
8 | 7 | 3adant3 1133 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = π) |
9 | 6, 8 | sseqtrd 4023 | 1 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 β wss 3949 βcfv 6544 Basecbs 17144 LModclmod 20471 LSubSpclss 20542 LSpanclspn 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-lmod 20473 df-lss 20543 df-lsp 20583 |
This theorem is referenced by: lspsnss 20601 lspprss 20603 lsp0 20620 lsslsp 20626 lmhmlsp 20660 lspextmo 20667 lsmsp 20697 lsppratlem3 20762 lsppratlem4 20763 islbs3 20768 rspssp 20851 ocvlsp 21229 frlmsslsp 21351 ply1degltdimlem 32707 lspsslco 47118 |
Copyright terms: Public domain | W3C validator |