MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssp Structured version   Visualization version   GIF version

Theorem lspssp 20248
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.)
Hypotheses
Ref Expression
lspssp.s 𝑆 = (LSubSp‘𝑊)
lspssp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspssp ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ 𝑈)

Proof of Theorem lspssp
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lspssp.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lssss 20196 . . 3 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 lspssp.n . . . 4 𝑁 = (LSpan‘𝑊)
51, 4lspss 20244 . . 3 ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊) ∧ 𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
63, 5syl3an2 1163 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
72, 4lspid 20242 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
873adant3 1131 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑈) = 𝑈)
96, 8sseqtrd 3962 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wss 3888  cfv 6435  Basecbs 16910  LModclmod 20121  LSubSpclss 20191  LSpanclspn 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-lmod 20123  df-lss 20192  df-lsp 20232
This theorem is referenced by:  lspsnss  20250  lspprss  20252  lsp0  20269  lsslsp  20275  lmhmlsp  20309  lspextmo  20316  lsmsp  20346  lsppratlem3  20409  lsppratlem4  20410  islbs3  20415  rspssp  20495  ocvlsp  20879  frlmsslsp  21001  lspsslco  45745
  Copyright terms: Public domain W3C validator