MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspssp Structured version   Visualization version   GIF version

Theorem lspssp 20165
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.)
Hypotheses
Ref Expression
lspssp.s 𝑆 = (LSubSp‘𝑊)
lspssp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspssp ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ 𝑈)

Proof of Theorem lspssp
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 lspssp.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lssss 20113 . . 3 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 lspssp.n . . . 4 𝑁 = (LSpan‘𝑊)
51, 4lspss 20161 . . 3 ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊) ∧ 𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
63, 5syl3an2 1162 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ (𝑁𝑈))
72, 4lspid 20159 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
873adant3 1130 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑈) = 𝑈)
96, 8sseqtrd 3957 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑇𝑈) → (𝑁𝑇) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Basecbs 16840  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-lmod 20040  df-lss 20109  df-lsp 20149
This theorem is referenced by:  lspsnss  20167  lspprss  20169  lsp0  20186  lsslsp  20192  lmhmlsp  20226  lspextmo  20233  lsmsp  20263  lsppratlem3  20326  lsppratlem4  20327  islbs3  20332  rspssp  20410  ocvlsp  20793  frlmsslsp  20913  lspsslco  45666
  Copyright terms: Public domain W3C validator