![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspssp | Structured version Visualization version GIF version |
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.) |
Ref | Expression |
---|---|
lspssp.s | β’ π = (LSubSpβπ) |
lspssp.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspssp | β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | lspssp.s | . . . 4 β’ π = (LSubSpβπ) | |
3 | 1, 2 | lssss 20781 | . . 3 β’ (π β π β π β (Baseβπ)) |
4 | lspssp.n | . . . 4 β’ π = (LSpanβπ) | |
5 | 1, 4 | lspss 20829 | . . 3 β’ ((π β LMod β§ π β (Baseβπ) β§ π β π) β (πβπ) β (πβπ)) |
6 | 3, 5 | syl3an2 1161 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β (πβπ)) |
7 | 2, 4 | lspid 20827 | . . 3 β’ ((π β LMod β§ π β π) β (πβπ) = π) |
8 | 7 | 3adant3 1129 | . 2 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) = π) |
9 | 6, 8 | sseqtrd 4017 | 1 β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 β wss 3943 βcfv 6536 Basecbs 17151 LModclmod 20704 LSubSpclss 20776 LSpanclspn 20816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-lmod 20706 df-lss 20777 df-lsp 20817 |
This theorem is referenced by: lspsnss 20835 lspprss 20837 lsp0 20854 lsslsp 20860 lsslspOLD 20861 lmhmlsp 20895 lspextmo 20902 lsmsp 20932 lsppratlem3 20998 lsppratlem4 20999 islbs3 21004 rspssp 21096 ocvlsp 21565 frlmsslsp 21687 ply1degltdimlem 33225 lspsslco 47374 |
Copyright terms: Public domain | W3C validator |