![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspssp | Structured version Visualization version GIF version |
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.) |
Ref | Expression |
---|---|
lspssp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspssp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspssp | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lspssp.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 19300 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
4 | lspssp.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 1, 4 | lspss 19350 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊) ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
6 | 3, 5 | syl3an2 1207 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
7 | 2, 4 | lspid 19348 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
8 | 7 | 3adant3 1166 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = 𝑈) |
9 | 6, 8 | sseqtrd 3866 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 ‘cfv 6127 Basecbs 16229 LModclmod 19226 LSubSpclss 19295 LSpanclspn 19337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-0g 16462 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-lmod 19228 df-lss 19296 df-lsp 19338 |
This theorem is referenced by: lspsnss 19356 lspprss 19358 lsp0 19375 lsslsp 19381 lmhmlsp 19415 lspextmo 19422 lsmsp 19452 lsppratlem3 19517 lsppratlem4 19518 islbs3 19523 rspssp 19594 ocvlsp 20390 frlmsslsp 20509 lspsslco 43087 |
Copyright terms: Public domain | W3C validator |