Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspssp | Structured version Visualization version GIF version |
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.) |
Ref | Expression |
---|---|
lspssp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspssp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspssp | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lspssp.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 20198 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
4 | lspssp.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 1, 4 | lspss 20246 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊) ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
6 | 3, 5 | syl3an2 1163 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
7 | 2, 4 | lspid 20244 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
8 | 7 | 3adant3 1131 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = 𝑈) |
9 | 6, 8 | sseqtrd 3961 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 Basecbs 16912 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 |
This theorem is referenced by: lspsnss 20252 lspprss 20254 lsp0 20271 lsslsp 20277 lmhmlsp 20311 lspextmo 20318 lsmsp 20348 lsppratlem3 20411 lsppratlem4 20412 islbs3 20417 rspssp 20497 ocvlsp 20881 frlmsslsp 21003 lspsslco 45778 |
Copyright terms: Public domain | W3C validator |