Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem13 Structured version   Visualization version   GIF version

Theorem knoppndvlem13 33097
Description: Lemma for knoppndv 33107. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem13.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem13.n (𝜑𝑁 ∈ ℕ)
knoppndvlem13.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem13 (𝜑𝐶 ≠ 0)

Proof of Theorem knoppndvlem13
StepHypRef Expression
1 knoppndvlem13.1 . . . 4 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
21adantr 474 . . 3 ((𝜑𝐶 = 0) → 1 < (𝑁 · (abs‘𝐶)))
3 0lt1 10897 . . . . . 6 0 < 1
4 0re 10378 . . . . . . 7 0 ∈ ℝ
5 1re 10376 . . . . . . 7 1 ∈ ℝ
64, 5ltnsymi 10495 . . . . . 6 (0 < 1 → ¬ 1 < 0)
73, 6ax-mp 5 . . . . 5 ¬ 1 < 0
87a1i 11 . . . 4 ((𝜑𝐶 = 0) → ¬ 1 < 0)
9 id 22 . . . . . . . . . 10 (𝐶 = 0 → 𝐶 = 0)
109abs00bd 14438 . . . . . . . . 9 (𝐶 = 0 → (abs‘𝐶) = 0)
1110oveq2d 6938 . . . . . . . 8 (𝐶 = 0 → (𝑁 · (abs‘𝐶)) = (𝑁 · 0))
1211adantl 475 . . . . . . 7 ((𝜑𝐶 = 0) → (𝑁 · (abs‘𝐶)) = (𝑁 · 0))
13 knoppndvlem13.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
14 nncn 11383 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1513, 14syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
1615adantr 474 . . . . . . . 8 ((𝜑𝐶 = 0) → 𝑁 ∈ ℂ)
1716mul01d 10575 . . . . . . 7 ((𝜑𝐶 = 0) → (𝑁 · 0) = 0)
1812, 17eqtrd 2813 . . . . . 6 ((𝜑𝐶 = 0) → (𝑁 · (abs‘𝐶)) = 0)
1918eqcomd 2783 . . . . 5 ((𝜑𝐶 = 0) → 0 = (𝑁 · (abs‘𝐶)))
2019breq2d 4898 . . . 4 ((𝜑𝐶 = 0) → (1 < 0 ↔ 1 < (𝑁 · (abs‘𝐶))))
218, 20mtbid 316 . . 3 ((𝜑𝐶 = 0) → ¬ 1 < (𝑁 · (abs‘𝐶)))
222, 21pm2.65da 807 . 2 (𝜑 → ¬ 𝐶 = 0)
2322neqned 2975 1 (𝜑𝐶 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1601  wcel 2106  wne 2968   class class class wbr 4886  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273   · cmul 10277   < clt 10411  -cneg 10607  cn 11374  (,)cioo 12487  abscabs 14381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383
This theorem is referenced by:  knoppndvlem14  33098  knoppndvlem17  33101
  Copyright terms: Public domain W3C validator