Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem13 Structured version   Visualization version   GIF version

Theorem knoppndvlem13 34631
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem13.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem13.n (𝜑𝑁 ∈ ℕ)
knoppndvlem13.1 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
Assertion
Ref Expression
knoppndvlem13 (𝜑𝐶 ≠ 0)

Proof of Theorem knoppndvlem13
StepHypRef Expression
1 knoppndvlem13.1 . . . 4 (𝜑 → 1 < (𝑁 · (abs‘𝐶)))
21adantr 480 . . 3 ((𝜑𝐶 = 0) → 1 < (𝑁 · (abs‘𝐶)))
3 0lt1 11427 . . . . . 6 0 < 1
4 0re 10908 . . . . . . 7 0 ∈ ℝ
5 1re 10906 . . . . . . 7 1 ∈ ℝ
64, 5ltnsymi 11024 . . . . . 6 (0 < 1 → ¬ 1 < 0)
73, 6ax-mp 5 . . . . 5 ¬ 1 < 0
87a1i 11 . . . 4 ((𝜑𝐶 = 0) → ¬ 1 < 0)
9 id 22 . . . . . . . . . 10 (𝐶 = 0 → 𝐶 = 0)
109abs00bd 14931 . . . . . . . . 9 (𝐶 = 0 → (abs‘𝐶) = 0)
1110oveq2d 7271 . . . . . . . 8 (𝐶 = 0 → (𝑁 · (abs‘𝐶)) = (𝑁 · 0))
1211adantl 481 . . . . . . 7 ((𝜑𝐶 = 0) → (𝑁 · (abs‘𝐶)) = (𝑁 · 0))
13 knoppndvlem13.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
14 nncn 11911 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1513, 14syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
1615adantr 480 . . . . . . . 8 ((𝜑𝐶 = 0) → 𝑁 ∈ ℂ)
1716mul01d 11104 . . . . . . 7 ((𝜑𝐶 = 0) → (𝑁 · 0) = 0)
1812, 17eqtrd 2778 . . . . . 6 ((𝜑𝐶 = 0) → (𝑁 · (abs‘𝐶)) = 0)
1918eqcomd 2744 . . . . 5 ((𝜑𝐶 = 0) → 0 = (𝑁 · (abs‘𝐶)))
2019breq2d 5082 . . . 4 ((𝜑𝐶 = 0) → (1 < 0 ↔ 1 < (𝑁 · (abs‘𝐶))))
218, 20mtbid 323 . . 3 ((𝜑𝐶 = 0) → ¬ 1 < (𝑁 · (abs‘𝐶)))
222, 21pm2.65da 813 . 2 (𝜑 → ¬ 𝐶 = 0)
2322neqned 2949 1 (𝜑𝐶 ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  -cneg 11136  cn 11903  (,)cioo 13008  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875
This theorem is referenced by:  knoppndvlem14  34632  knoppndvlem17  34635
  Copyright terms: Public domain W3C validator