Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem13 | Structured version Visualization version GIF version |
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppndvlem13.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
knoppndvlem13.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppndvlem13.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
Ref | Expression |
---|---|
knoppndvlem13 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem13.1 | . . . 4 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 0) → 1 < (𝑁 · (abs‘𝐶))) |
3 | 0lt1 11427 | . . . . . 6 ⊢ 0 < 1 | |
4 | 0re 10908 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
5 | 1re 10906 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 11024 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 0) → ¬ 1 < 0) |
9 | id 22 | . . . . . . . . . 10 ⊢ (𝐶 = 0 → 𝐶 = 0) | |
10 | 9 | abs00bd 14931 | . . . . . . . . 9 ⊢ (𝐶 = 0 → (abs‘𝐶) = 0) |
11 | 10 | oveq2d 7271 | . . . . . . . 8 ⊢ (𝐶 = 0 → (𝑁 · (abs‘𝐶)) = (𝑁 · 0)) |
12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · (abs‘𝐶)) = (𝑁 · 0)) |
13 | knoppndvlem13.n | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
14 | nncn 11911 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 = 0) → 𝑁 ∈ ℂ) |
17 | 16 | mul01d 11104 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · 0) = 0) |
18 | 12, 17 | eqtrd 2778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · (abs‘𝐶)) = 0) |
19 | 18 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = 0) → 0 = (𝑁 · (abs‘𝐶))) |
20 | 19 | breq2d 5082 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 0) → (1 < 0 ↔ 1 < (𝑁 · (abs‘𝐶)))) |
21 | 8, 20 | mtbid 323 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 0) → ¬ 1 < (𝑁 · (abs‘𝐶))) |
22 | 2, 21 | pm2.65da 813 | . 2 ⊢ (𝜑 → ¬ 𝐶 = 0) |
23 | 22 | neqned 2949 | 1 ⊢ (𝜑 → 𝐶 ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 -cneg 11136 ℕcn 11903 (,)cioo 13008 abscabs 14873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 |
This theorem is referenced by: knoppndvlem14 34632 knoppndvlem17 34635 |
Copyright terms: Public domain | W3C validator |