| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36522. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem13.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem13.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem13.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndvlem13 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppndvlem13.1 | . . . 4 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 0) → 1 < (𝑁 · (abs‘𝐶))) |
| 3 | 0lt1 11700 | . . . . . 6 ⊢ 0 < 1 | |
| 4 | 0re 11176 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 5 | 1re 11174 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | ltnsymi 11293 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
| 7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 0) → ¬ 1 < 0) |
| 9 | id 22 | . . . . . . . . . 10 ⊢ (𝐶 = 0 → 𝐶 = 0) | |
| 10 | 9 | abs00bd 15257 | . . . . . . . . 9 ⊢ (𝐶 = 0 → (abs‘𝐶) = 0) |
| 11 | 10 | oveq2d 7403 | . . . . . . . 8 ⊢ (𝐶 = 0 → (𝑁 · (abs‘𝐶)) = (𝑁 · 0)) |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · (abs‘𝐶)) = (𝑁 · 0)) |
| 13 | knoppndvlem13.n | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 14 | nncn 12194 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 = 0) → 𝑁 ∈ ℂ) |
| 17 | 16 | mul01d 11373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · 0) = 0) |
| 18 | 12, 17 | eqtrd 2764 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · (abs‘𝐶)) = 0) |
| 19 | 18 | eqcomd 2735 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = 0) → 0 = (𝑁 · (abs‘𝐶))) |
| 20 | 19 | breq2d 5119 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 0) → (1 < 0 ↔ 1 < (𝑁 · (abs‘𝐶)))) |
| 21 | 8, 20 | mtbid 324 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 0) → ¬ 1 < (𝑁 · (abs‘𝐶))) |
| 22 | 2, 21 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐶 = 0) |
| 23 | 22 | neqned 2932 | 1 ⊢ (𝜑 → 𝐶 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 -cneg 11406 ℕcn 12186 (,)cioo 13306 abscabs 15200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: knoppndvlem14 36513 knoppndvlem17 36516 |
| Copyright terms: Public domain | W3C validator |