| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppndvlem13 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppndv 36576. (Contributed by Asger C. Ipsen, 1-Jul-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| knoppndvlem13.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppndvlem13.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| knoppndvlem13.1 | ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) |
| Ref | Expression |
|---|---|
| knoppndvlem13 | ⊢ (𝜑 → 𝐶 ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppndvlem13.1 | . . . 4 ⊢ (𝜑 → 1 < (𝑁 · (abs‘𝐶))) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 0) → 1 < (𝑁 · (abs‘𝐶))) |
| 3 | 0lt1 11639 | . . . . . 6 ⊢ 0 < 1 | |
| 4 | 0re 11114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 5 | 1re 11112 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | ltnsymi 11232 | . . . . . 6 ⊢ (0 < 1 → ¬ 1 < 0) |
| 7 | 3, 6 | ax-mp 5 | . . . . 5 ⊢ ¬ 1 < 0 |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 0) → ¬ 1 < 0) |
| 9 | id 22 | . . . . . . . . . 10 ⊢ (𝐶 = 0 → 𝐶 = 0) | |
| 10 | 9 | abs00bd 15198 | . . . . . . . . 9 ⊢ (𝐶 = 0 → (abs‘𝐶) = 0) |
| 11 | 10 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝐶 = 0 → (𝑁 · (abs‘𝐶)) = (𝑁 · 0)) |
| 12 | 11 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · (abs‘𝐶)) = (𝑁 · 0)) |
| 13 | knoppndvlem13.n | . . . . . . . . . 10 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 14 | nncn 12133 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 15 | 13, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 = 0) → 𝑁 ∈ ℂ) |
| 17 | 16 | mul01d 11312 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · 0) = 0) |
| 18 | 12, 17 | eqtrd 2766 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐶 = 0) → (𝑁 · (abs‘𝐶)) = 0) |
| 19 | 18 | eqcomd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝐶 = 0) → 0 = (𝑁 · (abs‘𝐶))) |
| 20 | 19 | breq2d 5101 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 0) → (1 < 0 ↔ 1 < (𝑁 · (abs‘𝐶)))) |
| 21 | 8, 20 | mtbid 324 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 0) → ¬ 1 < (𝑁 · (abs‘𝐶))) |
| 22 | 2, 21 | pm2.65da 816 | . 2 ⊢ (𝜑 → ¬ 𝐶 = 0) |
| 23 | 22 | neqned 2935 | 1 ⊢ (𝜑 → 𝐶 ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 · cmul 11011 < clt 11146 -cneg 11345 ℕcn 12125 (,)cioo 13245 abscabs 15141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: knoppndvlem14 36567 knoppndvlem17 36570 |
| Copyright terms: Public domain | W3C validator |