Proof of Theorem recgt0
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℝ) |
2 | 1 | recnd 10934 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ∈ ℂ) |
3 | | gt0ne0 11370 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 𝐴 ≠ 0) |
4 | 2, 3 | recne0d 11675 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ≠ 0) |
5 | 4 | necomd 2998 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 ≠ (1 / 𝐴)) |
6 | 5 | neneqd 2947 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ¬ 0 = (1 /
𝐴)) |
7 | | 0lt1 11427 |
. . . . 5
⊢ 0 <
1 |
8 | | 0re 10908 |
. . . . . 6
⊢ 0 ∈
ℝ |
9 | | 1re 10906 |
. . . . . 6
⊢ 1 ∈
ℝ |
10 | 8, 9 | ltnsymi 11024 |
. . . . 5
⊢ (0 < 1
→ ¬ 1 < 0) |
11 | 7, 10 | ax-mp 5 |
. . . 4
⊢ ¬ 1
< 0 |
12 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈
ℝ) |
13 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ≠ 0) |
14 | 12, 13 | rereccld 11732 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℝ) |
15 | 14 | renegcld 11332 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈
ℝ) |
16 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0) |
17 | 1, 3 | rereccld 11732 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (1 / 𝐴) ∈
ℝ) |
18 | 17 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℝ) |
19 | 18 | lt0neg1d 11474 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 /
𝐴))) |
20 | 16, 19 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 /
𝐴)) |
21 | | simplr 765 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴) |
22 | 15, 12, 20, 21 | mulgt0d 11060 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 /
𝐴) · 𝐴)) |
23 | 2 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈
ℂ) |
24 | 23, 13 | reccld 11674 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈
ℂ) |
25 | 24, 23 | mulneg1d 11358 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴)) |
26 | 23, 13 | recid2d 11677 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1) |
27 | 26 | negeqd 11145 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1) |
28 | 25, 27 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1) |
29 | 22, 28 | breqtrd 5096 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 0 <
-1) |
30 | | 1red 10907 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈
ℝ) |
31 | 30 | lt0neg1d 11474 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0
↔ 0 < -1)) |
32 | 29, 31 | mpbird 256 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 <
𝐴) ∧ (1 / 𝐴) < 0) → 1 <
0) |
33 | 32 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((1 / 𝐴) < 0 → 1 <
0)) |
34 | 11, 33 | mtoi 198 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ¬ (1 / 𝐴) < 0) |
35 | | ioran 980 |
. . 3
⊢ (¬ (0
= (1 / 𝐴) ∨ (1 / 𝐴) < 0) ↔ (¬ 0 = (1 /
𝐴) ∧ ¬ (1 / 𝐴) < 0)) |
36 | 6, 34, 35 | sylanbrc 582 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ¬ (0 = (1 /
𝐴) ∨ (1 / 𝐴) < 0)) |
37 | | axlttri 10977 |
. . 3
⊢ ((0
∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))) |
38 | 8, 17, 37 | sylancr 586 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (0 < (1 /
𝐴) ↔ ¬ (0 = (1 /
𝐴) ∨ (1 / 𝐴) < 0))) |
39 | 36, 38 | mpbird 256 |
1
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (1 / 𝐴)) |