MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recgt0 Structured version   Visualization version   GIF version

Theorem recgt0 11751
Description: The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
recgt0 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))

Proof of Theorem recgt0
StepHypRef Expression
1 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
21recnd 10934 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
3 gt0ne0 11370 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
42, 3recne0d 11675 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ≠ 0)
54necomd 2998 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≠ (1 / 𝐴))
65neneqd 2947 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ¬ 0 = (1 / 𝐴))
7 0lt1 11427 . . . . 5 0 < 1
8 0re 10908 . . . . . 6 0 ∈ ℝ
9 1re 10906 . . . . . 6 1 ∈ ℝ
108, 9ltnsymi 11024 . . . . 5 (0 < 1 → ¬ 1 < 0)
117, 10ax-mp 5 . . . 4 ¬ 1 < 0
12 simpll 763 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℝ)
133adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ≠ 0)
1412, 13rereccld 11732 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
1514renegcld 11332 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -(1 / 𝐴) ∈ ℝ)
16 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) < 0)
171, 3rereccld 11732 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
1817adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℝ)
1918lt0neg1d 11474 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) < 0 ↔ 0 < -(1 / 𝐴)))
2016, 19mpbid 231 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -(1 / 𝐴))
21 simplr 765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < 𝐴)
2215, 12, 20, 21mulgt0d 11060 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < (-(1 / 𝐴) · 𝐴))
232adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 𝐴 ∈ ℂ)
2423, 13reccld 11674 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 / 𝐴) ∈ ℂ)
2524, 23mulneg1d 11358 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -((1 / 𝐴) · 𝐴))
2623, 13recid2d 11677 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → ((1 / 𝐴) · 𝐴) = 1)
2726negeqd 11145 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → -((1 / 𝐴) · 𝐴) = -1)
2825, 27eqtrd 2778 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (-(1 / 𝐴) · 𝐴) = -1)
2922, 28breqtrd 5096 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 0 < -1)
30 1red 10907 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 ∈ ℝ)
3130lt0neg1d 11474 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → (1 < 0 ↔ 0 < -1))
3229, 31mpbird 256 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (1 / 𝐴) < 0) → 1 < 0)
3332ex 412 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) < 0 → 1 < 0))
3411, 33mtoi 198 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ¬ (1 / 𝐴) < 0)
35 ioran 980 . . 3 (¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0) ↔ (¬ 0 = (1 / 𝐴) ∧ ¬ (1 / 𝐴) < 0))
366, 34, 35sylanbrc 582 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0))
37 axlttri 10977 . . 3 ((0 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)))
388, 17, 37sylancr 586 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (0 < (1 / 𝐴) ↔ ¬ (0 = (1 / 𝐴) ∨ (1 / 𝐴) < 0)))
3936, 38mpbird 256 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  -cneg 11136   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  prodgt0  11752  ltdiv1  11769  ltrec1  11792  lerec2  11793  lediv12a  11798  recgt1i  11802  recreclt  11804  recgt0i  11810  recgt0d  11839  nnrecgt0  11946  nnrecl  12161  resqrex  14890  leopmul  30397  cdj1i  30696
  Copyright terms: Public domain W3C validator