Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrn11at Structured version   Visualization version   GIF version

Theorem ltrn11at 40124
Description: Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
ltrneq2.a 𝐴 = (Atoms‘𝐾)
ltrneq2.h 𝐻 = (LHyp‘𝐾)
ltrneq2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrn11at (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐹𝑃) ≠ (𝐹𝑄))

Proof of Theorem ltrn11at
StepHypRef Expression
1 simp33 1211 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑃𝑄)
2 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2 1137 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝐹𝑇)
4 simp31 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑃𝐴)
5 eqid 2734 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
6 ltrneq2.a . . . . . 6 𝐴 = (Atoms‘𝐾)
75, 6atbase 39265 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
84, 7syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑃 ∈ (Base‘𝐾))
9 simp32 1210 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑄𝐴)
105, 6atbase 39265 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
119, 10syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → 𝑄 ∈ (Base‘𝐾))
12 ltrneq2.h . . . . 5 𝐻 = (LHyp‘𝐾)
13 ltrneq2.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
145, 12, 13ltrn11 40103 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → ((𝐹𝑃) = (𝐹𝑄) ↔ 𝑃 = 𝑄))
152, 3, 8, 11, 14syl112anc 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → ((𝐹𝑃) = (𝐹𝑄) ↔ 𝑃 = 𝑄))
1615necon3bid 2975 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → ((𝐹𝑃) ≠ (𝐹𝑄) ↔ 𝑃𝑄))
171, 16mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐹𝑃) ≠ (𝐹𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  cfv 6541  Basecbs 17230  Atomscatm 39239  HLchlt 39326  LHypclh 39961  LTrncltrn 40078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-ats 39243  df-laut 39966  df-ldil 40081  df-ltrn 40082
This theorem is referenced by:  cdlemg10a  40617  cdlemg12d  40623  cdlemg18a  40655
  Copyright terms: Public domain W3C validator