| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn11at | Structured version Visualization version GIF version | ||
| Description: Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013.) |
| Ref | Expression |
|---|---|
| ltrneq2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrneq2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrneq2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrn11at | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp33 1212 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ≠ 𝑄) | |
| 2 | simp1 1136 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 3 | simp2 1137 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝐹 ∈ 𝑇) | |
| 4 | simp31 1210 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ 𝐴) | |
| 5 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | ltrneq2.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 5, 6 | atbase 39277 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ (Base‘𝐾)) |
| 9 | simp32 1211 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ 𝐴) | |
| 10 | 5, 6 | atbase 39277 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ (Base‘𝐾)) |
| 12 | ltrneq2.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 13 | ltrneq2.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 14 | 5, 12, 13 | ltrn11 40115 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → ((𝐹‘𝑃) = (𝐹‘𝑄) ↔ 𝑃 = 𝑄)) |
| 15 | 2, 3, 8, 11, 14 | syl112anc 1376 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝐹‘𝑃) = (𝐹‘𝑄) ↔ 𝑃 = 𝑄)) |
| 16 | 15 | necon3bid 2970 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝐹‘𝑃) ≠ (𝐹‘𝑄) ↔ 𝑃 ≠ 𝑄)) |
| 17 | 1, 16 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → (𝐹‘𝑃) ≠ (𝐹‘𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6513 Basecbs 17185 Atomscatm 39251 HLchlt 39338 LHypclh 39973 LTrncltrn 40090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-ats 39255 df-laut 39978 df-ldil 40093 df-ltrn 40094 |
| This theorem is referenced by: cdlemg10a 40629 cdlemg12d 40635 cdlemg18a 40667 |
| Copyright terms: Public domain | W3C validator |