Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg10a Structured version   Visualization version   GIF version

Theorem cdlemg10a 40597
Description: TODO: FIX COMMENT. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg10a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem cdlemg10a
StepHypRef Expression
1 simp11 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp21 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐹𝑇)
5 simp22 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐺𝑇)
6 simp23 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝑄)
7 simp31 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
8 cdlemg8.l . . . 4 = (le‘𝐾)
9 cdlemg8.j . . . 4 = (join‘𝐾)
10 cdlemg8.m . . . 4 = (meet‘𝐾)
11 cdlemg8.a . . . 4 𝐴 = (Atoms‘𝐾)
12 cdlemg8.h . . . 4 𝐻 = (LHyp‘𝐾)
13 cdlemg8.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
148, 9, 10, 11, 12, 13cdlemg9 40591 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑃𝑄 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))) (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄))))
151, 2, 3, 4, 5, 6, 7, 14syl133anc 1393 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))) (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄))))
168, 11, 12, 13ltrnel 40096 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
171, 5, 2, 16syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
188, 11, 12, 13ltrnel 40096 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊))
191, 5, 3, 18syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊))
20 simp12l 1286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝐴)
21 simp13l 1288 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑄𝐴)
2211, 12, 13ltrn11at 40104 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐺𝑃) ≠ (𝐺𝑄))
231, 5, 20, 21, 6, 22syl113anc 1382 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐺𝑃) ≠ (𝐺𝑄))
24 simp32 1210 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
25 cdlemg10.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
268, 9, 10, 11, 12, 13, 25cdlemg10c 40596 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)) ↔ (𝑅𝐹) (𝑃 𝑄)))
271, 2, 3, 4, 5, 26syl122anc 1379 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)) ↔ (𝑅𝐹) (𝑃 𝑄)))
2824, 27mtbird 325 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)))
298, 9, 10, 11, 12, 13, 25trlval4 40145 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊) ∧ ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊)) ∧ ((𝐺𝑃) ≠ (𝐺𝑄) ∧ ¬ (𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)))) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) ((𝐺𝑄) (𝐹‘(𝐺𝑄)))))
301, 4, 17, 19, 23, 28, 29syl132anc 1388 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) ((𝐺𝑄) (𝐹‘(𝐺𝑄)))))
31 simp11l 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐾 ∈ HL)
328, 11, 12, 13ltrnat 40097 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
331, 5, 20, 32syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐺𝑃) ∈ 𝐴)
348, 11, 12, 13ltrnat 40097 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
351, 4, 33, 34syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
369, 11hlatjcom 39324 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) = ((𝐹‘(𝐺𝑃)) (𝐺𝑃)))
3731, 33, 35, 36syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) = ((𝐹‘(𝐺𝑃)) (𝐺𝑃)))
388, 11, 12, 13ltrnat 40097 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄𝐴) → (𝐺𝑄) ∈ 𝐴)
391, 5, 21, 38syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐺𝑄) ∈ 𝐴)
408, 11, 12, 13ltrnat 40097 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑄) ∈ 𝐴) → (𝐹‘(𝐺𝑄)) ∈ 𝐴)
411, 4, 39, 40syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐹‘(𝐺𝑄)) ∈ 𝐴)
429, 11hlatjcom 39324 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑄) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑄)) ∈ 𝐴) → ((𝐺𝑄) (𝐹‘(𝐺𝑄))) = ((𝐹‘(𝐺𝑄)) (𝐺𝑄)))
4331, 39, 41, 42syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑄) (𝐹‘(𝐺𝑄))) = ((𝐹‘(𝐺𝑄)) (𝐺𝑄)))
4437, 43oveq12d 7466 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) ((𝐺𝑄) (𝐹‘(𝐺𝑄)))) = (((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))))
4530, 44eqtrd 2780 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐹) = (((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))))
46 simp33 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐺) (𝑃 𝑄))
478, 9, 10, 11, 12, 13, 25trlval4 40145 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) (𝑄 (𝐺𝑄))))
481, 5, 2, 3, 6, 46, 47syl132anc 1388 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) (𝑄 (𝐺𝑄))))
499, 11hlatjcom 39324 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) = ((𝐺𝑃) 𝑃))
5031, 20, 33, 49syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 (𝐺𝑃)) = ((𝐺𝑃) 𝑃))
519, 11hlatjcom 39324 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐺𝑄) ∈ 𝐴) → (𝑄 (𝐺𝑄)) = ((𝐺𝑄) 𝑄))
5231, 21, 39, 51syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑄 (𝐺𝑄)) = ((𝐺𝑄) 𝑄))
5350, 52oveq12d 7466 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐺𝑃)) (𝑄 (𝐺𝑄))) = (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄)))
5448, 53eqtrd 2780 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) = (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄)))
5545, 54oveq12d 7466 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑅𝐹) (𝑅𝐺)) = ((((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))) (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄))))
5615, 55breqtrrd 5194 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  meetcmee 18382  Atomscatm 39219  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  cdlemg10  40598
  Copyright terms: Public domain W3C validator