Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg10a Structured version   Visualization version   GIF version

Theorem cdlemg10a 40685
Description: TODO: FIX COMMENT. (Contributed by NM, 3-May-2013.)
Hypotheses
Ref Expression
cdlemg8.l = (le‘𝐾)
cdlemg8.j = (join‘𝐾)
cdlemg8.m = (meet‘𝐾)
cdlemg8.a 𝐴 = (Atoms‘𝐾)
cdlemg8.h 𝐻 = (LHyp‘𝐾)
cdlemg8.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg10.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg10a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem cdlemg10a
StepHypRef Expression
1 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp21 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐹𝑇)
5 simp22 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐺𝑇)
6 simp23 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝑄)
7 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
8 cdlemg8.l . . . 4 = (le‘𝐾)
9 cdlemg8.j . . . 4 = (join‘𝐾)
10 cdlemg8.m . . . 4 = (meet‘𝐾)
11 cdlemg8.a . . . 4 𝐴 = (Atoms‘𝐾)
12 cdlemg8.h . . . 4 𝐻 = (LHyp‘𝐾)
13 cdlemg8.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
148, 9, 10, 11, 12, 13cdlemg9 40679 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇𝑃𝑄 ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))) (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄))))
151, 2, 3, 4, 5, 6, 7, 14syl133anc 1395 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))) (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄))))
168, 11, 12, 13ltrnel 40184 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
171, 5, 2, 16syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
188, 11, 12, 13ltrnel 40184 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊))
191, 5, 3, 18syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊))
20 simp12l 1287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑃𝐴)
21 simp13l 1289 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝑄𝐴)
2211, 12, 13ltrn11at 40192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴𝑄𝐴𝑃𝑄)) → (𝐺𝑃) ≠ (𝐺𝑄))
231, 5, 20, 21, 6, 22syl113anc 1384 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐺𝑃) ≠ (𝐺𝑄))
24 simp32 1211 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐹) (𝑃 𝑄))
25 cdlemg10.r . . . . . . . 8 𝑅 = ((trL‘𝐾)‘𝑊)
268, 9, 10, 11, 12, 13, 25cdlemg10c 40684 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)) ↔ (𝑅𝐹) (𝑃 𝑄)))
271, 2, 3, 4, 5, 26syl122anc 1381 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)) ↔ (𝑅𝐹) (𝑃 𝑄)))
2824, 27mtbird 325 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)))
298, 9, 10, 11, 12, 13, 25trlval4 40233 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊) ∧ ((𝐺𝑄) ∈ 𝐴 ∧ ¬ (𝐺𝑄) 𝑊)) ∧ ((𝐺𝑃) ≠ (𝐺𝑄) ∧ ¬ (𝑅𝐹) ((𝐺𝑃) (𝐺𝑄)))) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) ((𝐺𝑄) (𝐹‘(𝐺𝑄)))))
301, 4, 17, 19, 23, 28, 29syl132anc 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐹) = (((𝐺𝑃) (𝐹‘(𝐺𝑃))) ((𝐺𝑄) (𝐹‘(𝐺𝑄)))))
31 simp11l 1285 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐾 ∈ HL)
328, 11, 12, 13ltrnat 40185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
331, 5, 20, 32syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐺𝑃) ∈ 𝐴)
348, 11, 12, 13ltrnat 40185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
351, 4, 33, 34syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
369, 11hlatjcom 39413 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑃) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑃)) ∈ 𝐴) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) = ((𝐹‘(𝐺𝑃)) (𝐺𝑃)))
3731, 33, 35, 36syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑃) (𝐹‘(𝐺𝑃))) = ((𝐹‘(𝐺𝑃)) (𝐺𝑃)))
388, 11, 12, 13ltrnat 40185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑄𝐴) → (𝐺𝑄) ∈ 𝐴)
391, 5, 21, 38syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐺𝑄) ∈ 𝐴)
408, 11, 12, 13ltrnat 40185 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑄) ∈ 𝐴) → (𝐹‘(𝐺𝑄)) ∈ 𝐴)
411, 4, 39, 40syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝐹‘(𝐺𝑄)) ∈ 𝐴)
429, 11hlatjcom 39413 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐺𝑄) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑄)) ∈ 𝐴) → ((𝐺𝑄) (𝐹‘(𝐺𝑄))) = ((𝐹‘(𝐺𝑄)) (𝐺𝑄)))
4331, 39, 41, 42syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝐺𝑄) (𝐹‘(𝐺𝑄))) = ((𝐹‘(𝐺𝑄)) (𝐺𝑄)))
4437, 43oveq12d 7364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (((𝐺𝑃) (𝐹‘(𝐺𝑃))) ((𝐺𝑄) (𝐹‘(𝐺𝑄)))) = (((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))))
4530, 44eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐹) = (((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))))
46 simp33 1212 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ¬ (𝑅𝐺) (𝑃 𝑄))
478, 9, 10, 11, 12, 13, 25trlval4 40233 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) (𝑄 (𝐺𝑄))))
481, 5, 2, 3, 6, 46, 47syl132anc 1390 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) (𝑄 (𝐺𝑄))))
499, 11hlatjcom 39413 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) = ((𝐺𝑃) 𝑃))
5031, 20, 33, 49syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑃 (𝐺𝑃)) = ((𝐺𝑃) 𝑃))
519, 11hlatjcom 39413 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴 ∧ (𝐺𝑄) ∈ 𝐴) → (𝑄 (𝐺𝑄)) = ((𝐺𝑄) 𝑄))
5231, 21, 39, 51syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑄 (𝐺𝑄)) = ((𝐺𝑄) 𝑄))
5350, 52oveq12d 7364 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐺𝑃)) (𝑄 (𝐺𝑄))) = (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄)))
5448, 53eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → (𝑅𝐺) = (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄)))
5545, 54oveq12d 7364 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑅𝐹) (𝑅𝐺)) = ((((𝐹‘(𝐺𝑃)) (𝐺𝑃)) ((𝐹‘(𝐺𝑄)) (𝐺𝑄))) (((𝐺𝑃) 𝑃) ((𝐺𝑄) 𝑄))))
5615, 55breqtrrd 5119 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) (𝑄 (𝐹‘(𝐺𝑄)))) ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39308  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  trLctrl 40203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204
This theorem is referenced by:  cdlemg10  40686
  Copyright terms: Public domain W3C validator