Proof of Theorem ltrncoidN
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1 1191 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simpl3 1193 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐺 ∈ 𝑇) | 
| 3 |  | ltrn1o.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) | 
| 4 |  | ltrn1o.h | . . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) | 
| 5 |  | ltrn1o.t | . . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 6 | 3, 4, 5 | ltrn1o 40127 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:𝐵–1-1-onto→𝐵) | 
| 7 | 1, 2, 6 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐺:𝐵–1-1-onto→𝐵) | 
| 8 |  | f1ococnv1 6876 | . . . . . . 7
⊢ (𝐺:𝐵–1-1-onto→𝐵 → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝐵)) | 
| 9 | 7, 8 | syl 17 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝐵)) | 
| 10 | 9 | coeq2d 5872 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ (◡𝐺 ∘ 𝐺)) = (𝐹 ∘ ( I ↾ 𝐵))) | 
| 11 |  | simpl2 1192 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 ∈ 𝑇) | 
| 12 | 3, 4, 5 | ltrn1o 40127 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) | 
| 13 | 1, 11, 12 | syl2anc 584 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) | 
| 14 |  | f1of 6847 | . . . . . 6
⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) | 
| 15 |  | fcoi1 6781 | . . . . . 6
⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | 
| 16 | 13, 14, 15 | 3syl 18 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) | 
| 17 | 10, 16 | eqtr2d 2777 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 = (𝐹 ∘ (◡𝐺 ∘ 𝐺))) | 
| 18 |  | coass 6284 | . . . 4
⊢ ((𝐹 ∘ ◡𝐺) ∘ 𝐺) = (𝐹 ∘ (◡𝐺 ∘ 𝐺)) | 
| 19 | 17, 18 | eqtr4di 2794 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 = ((𝐹 ∘ ◡𝐺) ∘ 𝐺)) | 
| 20 |  | simpr 484 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) | 
| 21 | 20 | coeq1d 5871 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → ((𝐹 ∘ ◡𝐺) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺)) | 
| 22 |  | f1of 6847 | . . . . 5
⊢ (𝐺:𝐵–1-1-onto→𝐵 → 𝐺:𝐵⟶𝐵) | 
| 23 |  | fcoi2 6782 | . . . . 5
⊢ (𝐺:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) | 
| 24 | 7, 22, 23 | 3syl 18 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) | 
| 25 | 21, 24 | eqtrd 2776 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → ((𝐹 ∘ ◡𝐺) ∘ 𝐺) = 𝐺) | 
| 26 | 19, 25 | eqtrd 2776 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺) | 
| 27 |  | simpr 484 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → 𝐹 = 𝐺) | 
| 28 | 27 | coeq1d 5871 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐹 ∘ ◡𝐺) = (𝐺 ∘ ◡𝐺)) | 
| 29 |  | simpl1 1191 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 30 |  | simpl3 1193 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → 𝐺 ∈ 𝑇) | 
| 31 | 29, 30, 6 | syl2anc 584 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → 𝐺:𝐵–1-1-onto→𝐵) | 
| 32 |  | f1ococnv2 6874 | . . . 4
⊢ (𝐺:𝐵–1-1-onto→𝐵 → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝐵)) | 
| 33 | 31, 32 | syl 17 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝐵)) | 
| 34 | 28, 33 | eqtrd 2776 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) | 
| 35 | 26, 34 | impbida 800 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺)) |