Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoidN Structured version   Visualization version   GIF version

Theorem ltrncoidN 39455
Description: Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoidN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))

Proof of Theorem ltrncoidN
StepHypRef Expression
1 simpl1 1188 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺𝑇)
3 ltrn1o.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
4 ltrn1o.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
5 ltrn1o.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 39451 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
71, 2, 6syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺:𝐵1-1-onto𝐵)
8 f1ococnv1 6852 . . . . . . 7 (𝐺:𝐵1-1-onto𝐵 → (𝐺𝐺) = ( I ↾ 𝐵))
97, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐺𝐺) = ( I ↾ 𝐵))
109coeq2d 5852 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
11 simpl2 1189 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹𝑇)
123, 4, 5ltrn1o 39451 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
131, 11, 12syl2anc 583 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐵1-1-onto𝐵)
14 f1of 6823 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
15 fcoi1 6755 . . . . . 6 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1613, 14, 153syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1710, 16eqtr2d 2765 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = (𝐹 ∘ (𝐺𝐺)))
18 coass 6254 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
1917, 18eqtr4di 2782 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = ((𝐹𝐺) ∘ 𝐺))
20 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹𝐺) = ( I ↾ 𝐵))
2120coeq1d 5851 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → ((𝐹𝐺) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
22 f1of 6823 . . . . 5 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
23 fcoi2 6756 . . . . 5 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
247, 22, 233syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2521, 24eqtrd 2764 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → ((𝐹𝐺) ∘ 𝐺) = 𝐺)
2619, 25eqtrd 2764 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺)
27 simpr 484 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐹 = 𝐺)
2827coeq1d 5851 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐹𝐺) = (𝐺𝐺))
29 simpl1 1188 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simpl3 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐺𝑇)
3129, 30, 6syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐺:𝐵1-1-onto𝐵)
32 f1ococnv2 6850 . . . 4 (𝐺:𝐵1-1-onto𝐵 → (𝐺𝐺) = ( I ↾ 𝐵))
3331, 32syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐺𝐺) = ( I ↾ 𝐵))
3428, 33eqtrd 2764 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐹𝐺) = ( I ↾ 𝐵))
3526, 34impbida 798 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098   I cid 5563  ccnv 5665  cres 5668  ccom 5670  wf 6529  1-1-ontowf1o 6532  cfv 6533  Basecbs 17142  HLchlt 38676  LHypclh 39311  LTrncltrn 39428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8817  df-laut 39316  df-ldil 39431  df-ltrn 39432
This theorem is referenced by:  tendospcanN  40350
  Copyright terms: Public domain W3C validator