Proof of Theorem ltrncoidN
Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl3 1192 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐺 ∈ 𝑇) |
3 | | ltrn1o.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
4 | | ltrn1o.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | ltrn1o.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
6 | 3, 4, 5 | ltrn1o 38138 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:𝐵–1-1-onto→𝐵) |
7 | 1, 2, 6 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐺:𝐵–1-1-onto→𝐵) |
8 | | f1ococnv1 6745 |
. . . . . . 7
⊢ (𝐺:𝐵–1-1-onto→𝐵 → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝐵)) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (◡𝐺 ∘ 𝐺) = ( I ↾ 𝐵)) |
10 | 9 | coeq2d 5771 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ (◡𝐺 ∘ 𝐺)) = (𝐹 ∘ ( I ↾ 𝐵))) |
11 | | simpl2 1191 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 ∈ 𝑇) |
12 | 3, 4, 5 | ltrn1o 38138 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
13 | 1, 11, 12 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
14 | | f1of 6716 |
. . . . . 6
⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵⟶𝐵) |
15 | | fcoi1 6648 |
. . . . . 6
⊢ (𝐹:𝐵⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
16 | 13, 14, 15 | 3syl 18 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹) |
17 | 10, 16 | eqtr2d 2779 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 = (𝐹 ∘ (◡𝐺 ∘ 𝐺))) |
18 | | coass 6169 |
. . . 4
⊢ ((𝐹 ∘ ◡𝐺) ∘ 𝐺) = (𝐹 ∘ (◡𝐺 ∘ 𝐺)) |
19 | 17, 18 | eqtr4di 2796 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 = ((𝐹 ∘ ◡𝐺) ∘ 𝐺)) |
20 | | simpr 485 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) |
21 | 20 | coeq1d 5770 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → ((𝐹 ∘ ◡𝐺) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺)) |
22 | | f1of 6716 |
. . . . 5
⊢ (𝐺:𝐵–1-1-onto→𝐵 → 𝐺:𝐵⟶𝐵) |
23 | | fcoi2 6649 |
. . . . 5
⊢ (𝐺:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) |
24 | 7, 22, 23 | 3syl 18 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺) |
25 | 21, 24 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → ((𝐹 ∘ ◡𝐺) ∘ 𝐺) = 𝐺) |
26 | 19, 25 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺) |
27 | | simpr 485 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → 𝐹 = 𝐺) |
28 | 27 | coeq1d 5770 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐹 ∘ ◡𝐺) = (𝐺 ∘ ◡𝐺)) |
29 | | simpl1 1190 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
30 | | simpl3 1192 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → 𝐺 ∈ 𝑇) |
31 | 29, 30, 6 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → 𝐺:𝐵–1-1-onto→𝐵) |
32 | | f1ococnv2 6743 |
. . . 4
⊢ (𝐺:𝐵–1-1-onto→𝐵 → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝐵)) |
33 | 31, 32 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐺 ∘ ◡𝐺) = ( I ↾ 𝐵)) |
34 | 28, 33 | eqtrd 2778 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = 𝐺) → (𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵)) |
35 | 26, 34 | impbida 798 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝐹 ∘ ◡𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺)) |