Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoidN Structured version   Visualization version   GIF version

Theorem ltrncoidN 37424
Description: Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoidN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))

Proof of Theorem ltrncoidN
StepHypRef Expression
1 simpl1 1188 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1190 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺𝑇)
3 ltrn1o.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
4 ltrn1o.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
5 ltrn1o.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 37420 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:𝐵1-1-onto𝐵)
71, 2, 6syl2anc 587 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐺:𝐵1-1-onto𝐵)
8 f1ococnv1 6618 . . . . . . 7 (𝐺:𝐵1-1-onto𝐵 → (𝐺𝐺) = ( I ↾ 𝐵))
97, 8syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐺𝐺) = ( I ↾ 𝐵))
109coeq2d 5697 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ 𝐵)))
11 simpl2 1189 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹𝑇)
123, 4, 5ltrn1o 37420 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
131, 11, 12syl2anc 587 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹:𝐵1-1-onto𝐵)
14 f1of 6590 . . . . . 6 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵𝐵)
15 fcoi1 6526 . . . . . 6 (𝐹:𝐵𝐵 → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1613, 14, 153syl 18 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹 ∘ ( I ↾ 𝐵)) = 𝐹)
1710, 16eqtr2d 2834 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = (𝐹 ∘ (𝐺𝐺)))
18 coass 6085 . . . 4 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
1917, 18eqtr4di 2851 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = ((𝐹𝐺) ∘ 𝐺))
20 simpr 488 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (𝐹𝐺) = ( I ↾ 𝐵))
2120coeq1d 5696 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → ((𝐹𝐺) ∘ 𝐺) = (( I ↾ 𝐵) ∘ 𝐺))
22 f1of 6590 . . . . 5 (𝐺:𝐵1-1-onto𝐵𝐺:𝐵𝐵)
23 fcoi2 6527 . . . . 5 (𝐺:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
247, 22, 233syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → (( I ↾ 𝐵) ∘ 𝐺) = 𝐺)
2521, 24eqtrd 2833 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → ((𝐹𝐺) ∘ 𝐺) = 𝐺)
2619, 25eqtrd 2833 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝐹𝐺) = ( I ↾ 𝐵)) → 𝐹 = 𝐺)
27 simpr 488 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐹 = 𝐺)
2827coeq1d 5696 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐹𝐺) = (𝐺𝐺))
29 simpl1 1188 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 simpl3 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐺𝑇)
3129, 30, 6syl2anc 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → 𝐺:𝐵1-1-onto𝐵)
32 f1ococnv2 6616 . . . 4 (𝐺:𝐵1-1-onto𝐵 → (𝐺𝐺) = ( I ↾ 𝐵))
3331, 32syl 17 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐺𝐺) = ( I ↾ 𝐵))
3428, 33eqtrd 2833 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ 𝐹 = 𝐺) → (𝐹𝐺) = ( I ↾ 𝐵))
3526, 34impbida 800 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) = ( I ↾ 𝐵) ↔ 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111   I cid 5424  ccnv 5518  cres 5521  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  Basecbs 16475  HLchlt 36646  LHypclh 37280  LTrncltrn 37397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-laut 37285  df-ldil 37400  df-ltrn 37401
This theorem is referenced by:  tendospcanN  38319
  Copyright terms: Public domain W3C validator