Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautle Structured version   Visualization version   GIF version

Theorem lautle 38098
Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautle (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4 𝐵 = (Base‘𝐾)
2 lautset.l . . . 4 = (le‘𝐾)
3 lautset.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3islaut 38097 . . 3 (𝐾𝑉 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
54simplbda 500 . 2 ((𝐾𝑉𝐹𝐼) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))
6 breq1 5077 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
7 fveq2 6774 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
87breq1d 5084 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑦)))
96, 8bibi12d 346 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)) ↔ (𝑋 𝑦 ↔ (𝐹𝑋) (𝐹𝑦))))
10 breq2 5078 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
11 fveq2 6774 . . . . 5 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1211breq2d 5086 . . . 4 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑌)))
1310, 12bibi12d 346 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦 ↔ (𝐹𝑋) (𝐹𝑦)) ↔ (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌))))
149, 13rspc2v 3570 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌))))
155, 14mpan9 507 1 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  1-1-ontowf1o 6432  cfv 6433  Basecbs 16912  lecple 16969  LAutclaut 37999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-laut 38003
This theorem is referenced by:  lautcnvle  38103  lautlt  38105  lautj  38107  lautm  38108  lauteq  38109  lautco  38111  ltrnle  38143
  Copyright terms: Public domain W3C validator