Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautle Structured version   Visualization version   GIF version

Theorem lautle 40123
Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautle (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4 𝐵 = (Base‘𝐾)
2 lautset.l . . . 4 = (le‘𝐾)
3 lautset.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3islaut 40122 . . 3 (𝐾𝑉 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
54simplbda 499 . 2 ((𝐾𝑉𝐹𝐼) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))
6 breq1 5089 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
7 fveq2 6817 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
87breq1d 5096 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑦)))
96, 8bibi12d 345 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)) ↔ (𝑋 𝑦 ↔ (𝐹𝑋) (𝐹𝑦))))
10 breq2 5090 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
11 fveq2 6817 . . . . 5 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1211breq2d 5098 . . . 4 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑌)))
1310, 12bibi12d 345 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦 ↔ (𝐹𝑋) (𝐹𝑦)) ↔ (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌))))
149, 13rspc2v 3583 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌))))
155, 14mpan9 506 1 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5086  1-1-ontowf1o 6475  cfv 6476  Basecbs 17115  lecple 17163  LAutclaut 40024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-laut 40028
This theorem is referenced by:  lautcnvle  40128  lautlt  40130  lautj  40132  lautm  40133  lauteq  40134  lautco  40136  ltrnle  40168
  Copyright terms: Public domain W3C validator