Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautle Structured version   Visualization version   GIF version

Theorem lautle 40041
Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐵 = (Base‘𝐾)
lautset.l = (le‘𝐾)
lautset.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautle (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))

Proof of Theorem lautle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4 𝐵 = (Base‘𝐾)
2 lautset.l . . . 4 = (le‘𝐾)
3 lautset.i . . . 4 𝐼 = (LAut‘𝐾)
41, 2, 3islaut 40040 . . 3 (𝐾𝑉 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))))
54simplbda 499 . 2 ((𝐾𝑉𝐹𝐼) → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)))
6 breq1 5169 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
7 fveq2 6920 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
87breq1d 5176 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑦)))
96, 8bibi12d 345 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)) ↔ (𝑋 𝑦 ↔ (𝐹𝑋) (𝐹𝑦))))
10 breq2 5170 . . . 4 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
11 fveq2 6920 . . . . 5 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1211breq2d 5178 . . . 4 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦) ↔ (𝐹𝑋) (𝐹𝑌)))
1310, 12bibi12d 345 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑦 ↔ (𝐹𝑋) (𝐹𝑦)) ↔ (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌))))
149, 13rspc2v 3646 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦 ↔ (𝐹𝑥) (𝐹𝑦)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌))))
155, 14mpan9 506 1 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  1-1-ontowf1o 6572  cfv 6573  Basecbs 17258  lecple 17318  LAutclaut 39942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-laut 39946
This theorem is referenced by:  lautcnvle  40046  lautlt  40048  lautj  40050  lautm  40051  lauteq  40052  lautco  40054  ltrnle  40086
  Copyright terms: Public domain W3C validator