| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lautle | Structured version Visualization version GIF version | ||
| Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
| Ref | Expression |
|---|---|
| lautset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lautset.l | ⊢ ≤ = (le‘𝐾) |
| lautset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| lautle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lautset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lautset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lautset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 1, 2, 3 | islaut 40077 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| 5 | 4 | simplbda 499 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 6 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
| 7 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 8 | 7 | breq1d 5117 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦))) |
| 9 | 6, 8 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦)))) |
| 10 | breq2 5111 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
| 11 | fveq2 6858 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 12 | 11 | breq2d 5119 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 13 | 10, 12 | bibi12d 345 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌)))) |
| 14 | 9, 13 | rspc2v 3599 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌)))) |
| 15 | 5, 14 | mpan9 506 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 –1-1-onto→wf1o 6510 ‘cfv 6511 Basecbs 17179 lecple 17227 LAutclaut 39979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-laut 39983 |
| This theorem is referenced by: lautcnvle 40083 lautlt 40085 lautj 40087 lautm 40088 lauteq 40089 lautco 40091 ltrnle 40123 |
| Copyright terms: Public domain | W3C validator |