Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautle Structured version   Visualization version   GIF version

Theorem lautle 38950
Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautset.b 𝐡 = (Baseβ€˜πΎ)
lautset.l ≀ = (leβ€˜πΎ)
lautset.i 𝐼 = (LAutβ€˜πΎ)
Assertion
Ref Expression
lautle (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘Œ)))

Proof of Theorem lautle
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 lautset.l . . . 4 ≀ = (leβ€˜πΎ)
3 lautset.i . . . 4 𝐼 = (LAutβ€˜πΎ)
41, 2, 3islaut 38949 . . 3 (𝐾 ∈ 𝑉 β†’ (𝐹 ∈ 𝐼 ↔ (𝐹:𝐡–1-1-onto→𝐡 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘¦)))))
54simplbda 500 . 2 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘¦)))
6 breq1 5151 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ 𝑦 ↔ 𝑋 ≀ 𝑦))
7 fveq2 6891 . . . . 5 (π‘₯ = 𝑋 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘‹))
87breq1d 5158 . . . 4 (π‘₯ = 𝑋 β†’ ((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘¦) ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘¦)))
96, 8bibi12d 345 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ 𝑦 ↔ (πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘¦)) ↔ (𝑋 ≀ 𝑦 ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘¦))))
10 breq2 5152 . . . 4 (𝑦 = π‘Œ β†’ (𝑋 ≀ 𝑦 ↔ 𝑋 ≀ π‘Œ))
11 fveq2 6891 . . . . 5 (𝑦 = π‘Œ β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π‘Œ))
1211breq2d 5160 . . . 4 (𝑦 = π‘Œ β†’ ((πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘¦) ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘Œ)))
1310, 12bibi12d 345 . . 3 (𝑦 = π‘Œ β†’ ((𝑋 ≀ 𝑦 ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘¦)) ↔ (𝑋 ≀ π‘Œ ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘Œ))))
149, 13rspc2v 3622 . 2 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (π‘₯ ≀ 𝑦 ↔ (πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘¦)) β†’ (𝑋 ≀ π‘Œ ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘Œ))))
155, 14mpan9 507 1 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋 ≀ π‘Œ ↔ (πΉβ€˜π‘‹) ≀ (πΉβ€˜π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  Basecbs 17143  lecple 17203  LAutclaut 38851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-laut 38855
This theorem is referenced by:  lautcnvle  38955  lautlt  38957  lautj  38959  lautm  38960  lauteq  38961  lautco  38963  ltrnle  38995
  Copyright terms: Public domain W3C validator