| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lautle | Structured version Visualization version GIF version | ||
| Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
| Ref | Expression |
|---|---|
| lautset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lautset.l | ⊢ ≤ = (le‘𝐾) |
| lautset.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| lautle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lautset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lautset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | lautset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 1, 2, 3 | islaut 40084 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
| 5 | 4 | simplbda 499 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
| 6 | breq1 5113 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
| 7 | fveq2 6861 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 8 | 7 | breq1d 5120 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦))) |
| 9 | 6, 8 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦)))) |
| 10 | breq2 5114 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
| 11 | fveq2 6861 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 12 | 11 | breq2d 5122 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| 13 | 10, 12 | bibi12d 345 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌)))) |
| 14 | 9, 13 | rspc2v 3602 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌)))) |
| 15 | 5, 14 | mpan9 506 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 –1-1-onto→wf1o 6513 ‘cfv 6514 Basecbs 17186 lecple 17234 LAutclaut 39986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-laut 39990 |
| This theorem is referenced by: lautcnvle 40090 lautlt 40092 lautj 40094 lautm 40095 lauteq 40096 lautco 40098 ltrnle 40130 |
| Copyright terms: Public domain | W3C validator |