Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lautle | Structured version Visualization version GIF version |
Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.) |
Ref | Expression |
---|---|
lautset.b | ⊢ 𝐵 = (Base‘𝐾) |
lautset.l | ⊢ ≤ = (le‘𝐾) |
lautset.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
lautle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lautset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lautset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | lautset.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
4 | 1, 2, 3 | islaut 38024 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (𝐹 ∈ 𝐼 ↔ (𝐹:𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))))) |
5 | 4 | simplbda 499 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
6 | breq1 5073 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) | |
7 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
8 | 7 | breq1d 5080 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦))) |
9 | 6, 8 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑦 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦)))) |
10 | breq2 5074 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) | |
11 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
12 | 11 | breq2d 5082 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ≤ (𝐹‘𝑦) ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
13 | 10, 12 | bibi12d 345 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑦)) ↔ (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌)))) |
14 | 9, 13 | rspc2v 3562 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌)))) |
15 | 5, 14 | mpan9 506 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (𝐹‘𝑋) ≤ (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 –1-1-onto→wf1o 6417 ‘cfv 6418 Basecbs 16840 lecple 16895 LAutclaut 37926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-laut 37930 |
This theorem is referenced by: lautcnvle 38030 lautlt 38032 lautj 38034 lautm 38035 lauteq 38036 lautco 38038 ltrnle 38070 |
Copyright terms: Public domain | W3C validator |