MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2 Structured version   Visualization version   GIF version

Theorem coe1mul2 22184
Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul2.s 𝑆 = (PwSer1𝑅)
coe1mul2.t = (.r𝑆)
coe1mul2.u · = (.r𝑅)
coe1mul2.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
coe1mul2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   · ,𝑘,𝑥   𝑘,𝐺,𝑥   𝑅,𝑘,𝑥   ,𝑘
Allowed substitution hints:   𝑆(𝑥,𝑘)   (𝑥)

Proof of Theorem coe1mul2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6717 . . . . 5 (𝑘 ∈ ℕ0 → (1o × {𝑘}):1o⟶ℕ0)
2 nn0ex 12394 . . . . . 6 0 ∈ V
3 1on 8403 . . . . . . 7 1o ∈ On
43elexi 3460 . . . . . 6 1o ∈ V
52, 4elmap 8801 . . . . 5 ((1o × {𝑘}) ∈ (ℕ0m 1o) ↔ (1o × {𝑘}):1o⟶ℕ0)
61, 5sylibr 234 . . . 4 (𝑘 ∈ ℕ0 → (1o × {𝑘}) ∈ (ℕ0m 1o))
76adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (1o × {𝑘}) ∈ (ℕ0m 1o))
8 eqidd 2734 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})))
9 eqid 2733 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
10 coe1mul2.s . . . . 5 𝑆 = (PwSer1𝑅)
11 coe1mul2.b . . . . 5 𝐵 = (Base‘𝑆)
1210, 11, 9psr1bas2 22103 . . . 4 𝐵 = (Base‘(1o mPwSer 𝑅))
13 coe1mul2.u . . . 4 · = (.r𝑅)
14 coe1mul2.t . . . . 5 = (.r𝑆)
1510, 9, 14psr1mulr 22136 . . . 4 = (.r‘(1o mPwSer 𝑅))
16 psr1baslem 22098 . . . 4 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
17 simp2 1137 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
18 simp3 1138 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
199, 12, 13, 15, 16, 17, 18psrmulfval 21882 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))))))
20 breq2 5097 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝑑r𝑏𝑑r ≤ (1o × {𝑘})))
2120rabbidv 3403 . . . . 5 (𝑏 = (1o × {𝑘}) → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})})
22 fvoveq1 7375 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝐺‘(𝑏f𝑐)) = (𝐺‘((1o × {𝑘}) ∘f𝑐)))
2322oveq2d 7368 . . . . 5 (𝑏 = (1o × {𝑘}) → ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))) = ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))
2421, 23mpteq12dv 5180 . . . 4 (𝑏 = (1o × {𝑘}) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
2524oveq2d 7368 . . 3 (𝑏 = (1o × {𝑘}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
267, 8, 19, 25fmptco 7068 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
2710psr1ring 22160 . . . 4 (𝑅 ∈ Ring → 𝑆 ∈ Ring)
2811, 14ringcl 20170 . . . 4 ((𝑆 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
2927, 28syl3an1 1163 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
30 eqid 2733 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
31 eqid 2733 . . . 4 (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))
3230, 11, 10, 31coe1fval3 22122 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
3329, 32syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
34 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
35 eqid 2733 . . . . 5 (0g𝑅) = (0g𝑅)
36 simpl1 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
37 ringcmn 20202 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
3836, 37syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
39 fzfi 13881 . . . . . 6 (0...𝑘) ∈ Fin
4039a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
41 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
42 simpll2 1214 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐹𝐵)
43 eqid 2733 . . . . . . . . . 10 (coe1𝐹) = (coe1𝐹)
4443, 11, 10, 34coe1f2 22123 . . . . . . . . 9 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
4542, 44syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
46 elfznn0 13522 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℕ0)
4746adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑥 ∈ ℕ0)
4845, 47ffvelcdmd 7024 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅))
49 simpll3 1215 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐺𝐵)
50 eqid 2733 . . . . . . . . . 10 (coe1𝐺) = (coe1𝐺)
5150, 11, 10, 34coe1f2 22123 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
5249, 51syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
53 fznn0sub 13458 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → (𝑘𝑥) ∈ ℕ0)
5453adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (𝑘𝑥) ∈ ℕ0)
5552, 54ffvelcdmd 7024 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅))
5634, 13ringcl 20170 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5741, 48, 55, 56syl3anc 1373 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5857fmpttd 7054 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))):(0...𝑘)⟶(Base‘𝑅))
5939elexi 3460 . . . . . . . . 9 (0...𝑘) ∈ V
6059mptex 7163 . . . . . . . 8 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V
61 funmpt 6524 . . . . . . . 8 Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
62 fvex 6841 . . . . . . . 8 (0g𝑅) ∈ V
6360, 61, 623pm3.2i 1340 . . . . . . 7 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V)
64 suppssdm 8113 . . . . . . . . 9 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
65 eqid 2733 . . . . . . . . . 10 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6665dmmptss 6193 . . . . . . . . 9 dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ⊆ (0...𝑘)
6764, 66sstri 3940 . . . . . . . 8 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘)
6839, 67pm3.2i 470 . . . . . . 7 ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))
69 suppssfifsupp 9271 . . . . . . 7 ((((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
7063, 68, 69mp2an 692 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅)
7170a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
72 eqid 2733 . . . . . . 7 {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
7372coe1mul2lem2 22183 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7473adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7534, 35, 38, 40, 58, 71, 74gsumf1o 19830 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))))
76 breq1 5096 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑r ≤ (1o × {𝑘}) ↔ 𝑐r ≤ (1o × {𝑘})))
7776elrab 3643 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↔ (𝑐 ∈ (ℕ0m 1o) ∧ 𝑐r ≤ (1o × {𝑘})))
7877simprbi 496 . . . . . . . . 9 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐r ≤ (1o × {𝑘}))
7978adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐r ≤ (1o × {𝑘}))
80 simplr 768 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ ℕ0)
81 elrabi 3639 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐 ∈ (ℕ0m 1o))
8281adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 ∈ (ℕ0m 1o))
83 coe1mul2lem1 22182 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑐 ∈ (ℕ0m 1o)) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8480, 82, 83syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8579, 84mpbid 232 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ (0...𝑘))
86 eqidd 2734 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))
87 eqidd 2734 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))
88 fveq2 6828 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐹)‘𝑥) = ((coe1𝐹)‘(𝑐‘∅)))
89 oveq2 7360 . . . . . . . . 9 (𝑥 = (𝑐‘∅) → (𝑘𝑥) = (𝑘 − (𝑐‘∅)))
9089fveq2d 6832 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐺)‘(𝑘𝑥)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
9188, 90oveq12d 7370 . . . . . . 7 (𝑥 = (𝑐‘∅) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
9285, 86, 87, 91fmptco 7068 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
93 simpll2 1214 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐹𝐵)
9443fvcoe1 22121 . . . . . . . . 9 ((𝐹𝐵𝑐 ∈ (ℕ0m 1o)) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
9593, 82, 94syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
96 df1o2 8398 . . . . . . . . . . . . . 14 1o = {∅}
97 0ex 5247 . . . . . . . . . . . . . 14 ∅ ∈ V
9896, 2, 97mapsnconst 8822 . . . . . . . . . . . . 13 (𝑐 ∈ (ℕ0m 1o) → 𝑐 = (1o × {(𝑐‘∅)}))
9982, 98syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 = (1o × {(𝑐‘∅)}))
10099oveq2d 7368 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})))
1013a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 1o ∈ On)
102 vex 3441 . . . . . . . . . . . . 13 𝑘 ∈ V
103102a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ V)
104 fvexd 6843 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ V)
105101, 103, 104ofc12 7646 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})) = (1o × {(𝑘 − (𝑐‘∅))}))
106100, 105eqtrd 2768 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = (1o × {(𝑘 − (𝑐‘∅))}))
107106fveq2d 6832 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
108 simpll3 1215 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐺𝐵)
109 fznn0sub 13458 . . . . . . . . . . 11 ((𝑐‘∅) ∈ (0...𝑘) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11085, 109syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11150coe1fv 22120 . . . . . . . . . 10 ((𝐺𝐵 ∧ (𝑘 − (𝑐‘∅)) ∈ ℕ0) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
112108, 110, 111syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
113107, 112eqtr4d 2771 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
11495, 113oveq12d 7370 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
115114mpteq2dva 5186 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
11692, 115eqtr4d 2771 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
117116oveq2d 7368 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
11875, 117eqtrd 2768 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
119118mpteq2dva 5186 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
12026, 33, 1193eqtr4d 2778 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  wss 3898  c0 4282  {csn 4575   class class class wbr 5093  cmpt 5174   × cxp 5617  dom cdm 5619  ccom 5623  Oncon0 6311  Fun wfun 6480  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  f cof 7614  r cofr 7615   supp csupp 8096  1oc1o 8384  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252  0cc0 11013  cle 11154  cmin 11351  0cn0 12388  ...cfz 13409  Basecbs 17122  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  CMndccmn 19694  Ringcrg 20153   mPwSer cmps 21843  PwSer1cps1 22088  coe1cco1 22091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-psr 21848  df-opsr 21852  df-psr1 22093  df-coe1 22096
This theorem is referenced by:  coe1mul  22185
  Copyright terms: Public domain W3C validator