MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2 Structured version   Visualization version   GIF version

Theorem coe1mul2 21350
Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul2.s 𝑆 = (PwSer1𝑅)
coe1mul2.t = (.r𝑆)
coe1mul2.u · = (.r𝑅)
coe1mul2.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
coe1mul2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   · ,𝑘,𝑥   𝑘,𝐺,𝑥   𝑅,𝑘,𝑥   ,𝑘
Allowed substitution hints:   𝑆(𝑥,𝑘)   (𝑥)

Proof of Theorem coe1mul2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6647 . . . . 5 (𝑘 ∈ ℕ0 → (1o × {𝑘}):1o⟶ℕ0)
2 nn0ex 12169 . . . . . 6 0 ∈ V
3 1on 8274 . . . . . . 7 1o ∈ On
43elexi 3441 . . . . . 6 1o ∈ V
52, 4elmap 8617 . . . . 5 ((1o × {𝑘}) ∈ (ℕ0m 1o) ↔ (1o × {𝑘}):1o⟶ℕ0)
61, 5sylibr 233 . . . 4 (𝑘 ∈ ℕ0 → (1o × {𝑘}) ∈ (ℕ0m 1o))
76adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (1o × {𝑘}) ∈ (ℕ0m 1o))
8 eqidd 2739 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})))
9 eqid 2738 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
10 coe1mul2.s . . . . 5 𝑆 = (PwSer1𝑅)
11 coe1mul2.b . . . . 5 𝐵 = (Base‘𝑆)
1210, 11, 9psr1bas2 21271 . . . 4 𝐵 = (Base‘(1o mPwSer 𝑅))
13 coe1mul2.u . . . 4 · = (.r𝑅)
14 coe1mul2.t . . . . 5 = (.r𝑆)
1510, 9, 14psr1mulr 21305 . . . 4 = (.r‘(1o mPwSer 𝑅))
16 psr1baslem 21266 . . . 4 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
17 simp2 1135 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
18 simp3 1136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
199, 12, 13, 15, 16, 17, 18psrmulfval 21064 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))))))
20 breq2 5074 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝑑r𝑏𝑑r ≤ (1o × {𝑘})))
2120rabbidv 3404 . . . . 5 (𝑏 = (1o × {𝑘}) → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})})
22 fvoveq1 7278 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝐺‘(𝑏f𝑐)) = (𝐺‘((1o × {𝑘}) ∘f𝑐)))
2322oveq2d 7271 . . . . 5 (𝑏 = (1o × {𝑘}) → ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))) = ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))
2421, 23mpteq12dv 5161 . . . 4 (𝑏 = (1o × {𝑘}) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
2524oveq2d 7271 . . 3 (𝑏 = (1o × {𝑘}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
267, 8, 19, 25fmptco 6983 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
2710psr1ring 21328 . . . 4 (𝑅 ∈ Ring → 𝑆 ∈ Ring)
2811, 14ringcl 19715 . . . 4 ((𝑆 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
2927, 28syl3an1 1161 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
30 eqid 2738 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
31 eqid 2738 . . . 4 (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))
3230, 11, 10, 31coe1fval3 21289 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
3329, 32syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
34 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
35 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
36 simpl1 1189 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
37 ringcmn 19735 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
3836, 37syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
39 fzfi 13620 . . . . . 6 (0...𝑘) ∈ Fin
4039a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
41 simpll1 1210 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
42 simpll2 1211 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐹𝐵)
43 eqid 2738 . . . . . . . . . 10 (coe1𝐹) = (coe1𝐹)
4443, 11, 10, 34coe1f2 21290 . . . . . . . . 9 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
4542, 44syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
46 elfznn0 13278 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℕ0)
4746adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑥 ∈ ℕ0)
4845, 47ffvelrnd 6944 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅))
49 simpll3 1212 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐺𝐵)
50 eqid 2738 . . . . . . . . . 10 (coe1𝐺) = (coe1𝐺)
5150, 11, 10, 34coe1f2 21290 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
5249, 51syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
53 fznn0sub 13217 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → (𝑘𝑥) ∈ ℕ0)
5453adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (𝑘𝑥) ∈ ℕ0)
5552, 54ffvelrnd 6944 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅))
5634, 13ringcl 19715 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5741, 48, 55, 56syl3anc 1369 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5857fmpttd 6971 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))):(0...𝑘)⟶(Base‘𝑅))
5939elexi 3441 . . . . . . . . 9 (0...𝑘) ∈ V
6059mptex 7081 . . . . . . . 8 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V
61 funmpt 6456 . . . . . . . 8 Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
62 fvex 6769 . . . . . . . 8 (0g𝑅) ∈ V
6360, 61, 623pm3.2i 1337 . . . . . . 7 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V)
64 suppssdm 7964 . . . . . . . . 9 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
65 eqid 2738 . . . . . . . . . 10 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6665dmmptss 6133 . . . . . . . . 9 dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ⊆ (0...𝑘)
6764, 66sstri 3926 . . . . . . . 8 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘)
6839, 67pm3.2i 470 . . . . . . 7 ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))
69 suppssfifsupp 9073 . . . . . . 7 ((((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
7063, 68, 69mp2an 688 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅)
7170a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
72 eqid 2738 . . . . . . 7 {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
7372coe1mul2lem2 21349 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7473adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7534, 35, 38, 40, 58, 71, 74gsumf1o 19432 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))))
76 breq1 5073 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑r ≤ (1o × {𝑘}) ↔ 𝑐r ≤ (1o × {𝑘})))
7776elrab 3617 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↔ (𝑐 ∈ (ℕ0m 1o) ∧ 𝑐r ≤ (1o × {𝑘})))
7877simprbi 496 . . . . . . . . 9 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐r ≤ (1o × {𝑘}))
7978adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐r ≤ (1o × {𝑘}))
80 simplr 765 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ ℕ0)
81 elrabi 3611 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐 ∈ (ℕ0m 1o))
8281adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 ∈ (ℕ0m 1o))
83 coe1mul2lem1 21348 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑐 ∈ (ℕ0m 1o)) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8480, 82, 83syl2anc 583 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8579, 84mpbid 231 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ (0...𝑘))
86 eqidd 2739 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))
87 eqidd 2739 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))
88 fveq2 6756 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐹)‘𝑥) = ((coe1𝐹)‘(𝑐‘∅)))
89 oveq2 7263 . . . . . . . . 9 (𝑥 = (𝑐‘∅) → (𝑘𝑥) = (𝑘 − (𝑐‘∅)))
9089fveq2d 6760 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐺)‘(𝑘𝑥)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
9188, 90oveq12d 7273 . . . . . . 7 (𝑥 = (𝑐‘∅) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
9285, 86, 87, 91fmptco 6983 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
93 simpll2 1211 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐹𝐵)
9443fvcoe1 21288 . . . . . . . . 9 ((𝐹𝐵𝑐 ∈ (ℕ0m 1o)) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
9593, 82, 94syl2anc 583 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
96 df1o2 8279 . . . . . . . . . . . . . 14 1o = {∅}
97 0ex 5226 . . . . . . . . . . . . . 14 ∅ ∈ V
9896, 2, 97mapsnconst 8638 . . . . . . . . . . . . 13 (𝑐 ∈ (ℕ0m 1o) → 𝑐 = (1o × {(𝑐‘∅)}))
9982, 98syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 = (1o × {(𝑐‘∅)}))
10099oveq2d 7271 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})))
1013a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 1o ∈ On)
102 vex 3426 . . . . . . . . . . . . 13 𝑘 ∈ V
103102a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ V)
104 fvexd 6771 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ V)
105101, 103, 104ofc12 7539 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})) = (1o × {(𝑘 − (𝑐‘∅))}))
106100, 105eqtrd 2778 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = (1o × {(𝑘 − (𝑐‘∅))}))
107106fveq2d 6760 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
108 simpll3 1212 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐺𝐵)
109 fznn0sub 13217 . . . . . . . . . . 11 ((𝑐‘∅) ∈ (0...𝑘) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11085, 109syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11150coe1fv 21287 . . . . . . . . . 10 ((𝐺𝐵 ∧ (𝑘 − (𝑐‘∅)) ∈ ℕ0) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
112108, 110, 111syl2anc 583 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
113107, 112eqtr4d 2781 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
11495, 113oveq12d 7273 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
115114mpteq2dva 5170 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
11692, 115eqtr4d 2781 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
117116oveq2d 7271 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
11875, 117eqtrd 2778 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
119118mpteq2dva 5170 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
12026, 33, 1193eqtr4d 2788 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  ccom 5584  Oncon0 6251  Fun wfun 6412  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510   supp csupp 7948  1oc1o 8260  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  0cc0 10802  cle 10941  cmin 11135  0cn0 12163  ...cfz 13168  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301  Ringcrg 19698   mPwSer cmps 21017  PwSer1cps1 21256  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-psr 21022  df-opsr 21026  df-psr1 21261  df-coe1 21264
This theorem is referenced by:  coe1mul  21351
  Copyright terms: Public domain W3C validator