MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2 Structured version   Visualization version   GIF version

Theorem coe1mul2 22171
Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul2.s 𝑆 = (PwSer1𝑅)
coe1mul2.t = (.r𝑆)
coe1mul2.u · = (.r𝑅)
coe1mul2.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
coe1mul2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   · ,𝑘,𝑥   𝑘,𝐺,𝑥   𝑅,𝑘,𝑥   ,𝑘
Allowed substitution hints:   𝑆(𝑥,𝑘)   (𝑥)

Proof of Theorem coe1mul2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6717 . . . . 5 (𝑘 ∈ ℕ0 → (1o × {𝑘}):1o⟶ℕ0)
2 nn0ex 12408 . . . . . 6 0 ∈ V
3 1on 8407 . . . . . . 7 1o ∈ On
43elexi 3461 . . . . . 6 1o ∈ V
52, 4elmap 8805 . . . . 5 ((1o × {𝑘}) ∈ (ℕ0m 1o) ↔ (1o × {𝑘}):1o⟶ℕ0)
61, 5sylibr 234 . . . 4 (𝑘 ∈ ℕ0 → (1o × {𝑘}) ∈ (ℕ0m 1o))
76adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (1o × {𝑘}) ∈ (ℕ0m 1o))
8 eqidd 2730 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})))
9 eqid 2729 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
10 coe1mul2.s . . . . 5 𝑆 = (PwSer1𝑅)
11 coe1mul2.b . . . . 5 𝐵 = (Base‘𝑆)
1210, 11, 9psr1bas2 22090 . . . 4 𝐵 = (Base‘(1o mPwSer 𝑅))
13 coe1mul2.u . . . 4 · = (.r𝑅)
14 coe1mul2.t . . . . 5 = (.r𝑆)
1510, 9, 14psr1mulr 22123 . . . 4 = (.r‘(1o mPwSer 𝑅))
16 psr1baslem 22085 . . . 4 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
17 simp2 1137 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
18 simp3 1138 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
199, 12, 13, 15, 16, 17, 18psrmulfval 21868 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))))))
20 breq2 5099 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝑑r𝑏𝑑r ≤ (1o × {𝑘})))
2120rabbidv 3404 . . . . 5 (𝑏 = (1o × {𝑘}) → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})})
22 fvoveq1 7376 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝐺‘(𝑏f𝑐)) = (𝐺‘((1o × {𝑘}) ∘f𝑐)))
2322oveq2d 7369 . . . . 5 (𝑏 = (1o × {𝑘}) → ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))) = ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))
2421, 23mpteq12dv 5182 . . . 4 (𝑏 = (1o × {𝑘}) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
2524oveq2d 7369 . . 3 (𝑏 = (1o × {𝑘}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
267, 8, 19, 25fmptco 7067 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
2710psr1ring 22147 . . . 4 (𝑅 ∈ Ring → 𝑆 ∈ Ring)
2811, 14ringcl 20153 . . . 4 ((𝑆 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
2927, 28syl3an1 1163 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
30 eqid 2729 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
31 eqid 2729 . . . 4 (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))
3230, 11, 10, 31coe1fval3 22109 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
3329, 32syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
34 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
35 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
36 simpl1 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
37 ringcmn 20185 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
3836, 37syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
39 fzfi 13897 . . . . . 6 (0...𝑘) ∈ Fin
4039a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
41 simpll1 1213 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
42 simpll2 1214 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐹𝐵)
43 eqid 2729 . . . . . . . . . 10 (coe1𝐹) = (coe1𝐹)
4443, 11, 10, 34coe1f2 22110 . . . . . . . . 9 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
4542, 44syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
46 elfznn0 13541 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℕ0)
4746adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑥 ∈ ℕ0)
4845, 47ffvelcdmd 7023 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅))
49 simpll3 1215 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐺𝐵)
50 eqid 2729 . . . . . . . . . 10 (coe1𝐺) = (coe1𝐺)
5150, 11, 10, 34coe1f2 22110 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
5249, 51syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
53 fznn0sub 13477 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → (𝑘𝑥) ∈ ℕ0)
5453adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (𝑘𝑥) ∈ ℕ0)
5552, 54ffvelcdmd 7023 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅))
5634, 13ringcl 20153 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5741, 48, 55, 56syl3anc 1373 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5857fmpttd 7053 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))):(0...𝑘)⟶(Base‘𝑅))
5939elexi 3461 . . . . . . . . 9 (0...𝑘) ∈ V
6059mptex 7163 . . . . . . . 8 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V
61 funmpt 6524 . . . . . . . 8 Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
62 fvex 6839 . . . . . . . 8 (0g𝑅) ∈ V
6360, 61, 623pm3.2i 1340 . . . . . . 7 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V)
64 suppssdm 8117 . . . . . . . . 9 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
65 eqid 2729 . . . . . . . . . 10 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6665dmmptss 6194 . . . . . . . . 9 dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ⊆ (0...𝑘)
6764, 66sstri 3947 . . . . . . . 8 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘)
6839, 67pm3.2i 470 . . . . . . 7 ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))
69 suppssfifsupp 9289 . . . . . . 7 ((((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
7063, 68, 69mp2an 692 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅)
7170a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
72 eqid 2729 . . . . . . 7 {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
7372coe1mul2lem2 22170 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7473adantl 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7534, 35, 38, 40, 58, 71, 74gsumf1o 19813 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))))
76 breq1 5098 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑r ≤ (1o × {𝑘}) ↔ 𝑐r ≤ (1o × {𝑘})))
7776elrab 3650 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↔ (𝑐 ∈ (ℕ0m 1o) ∧ 𝑐r ≤ (1o × {𝑘})))
7877simprbi 496 . . . . . . . . 9 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐r ≤ (1o × {𝑘}))
7978adantl 481 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐r ≤ (1o × {𝑘}))
80 simplr 768 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ ℕ0)
81 elrabi 3645 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐 ∈ (ℕ0m 1o))
8281adantl 481 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 ∈ (ℕ0m 1o))
83 coe1mul2lem1 22169 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑐 ∈ (ℕ0m 1o)) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8480, 82, 83syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8579, 84mpbid 232 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ (0...𝑘))
86 eqidd 2730 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))
87 eqidd 2730 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))
88 fveq2 6826 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐹)‘𝑥) = ((coe1𝐹)‘(𝑐‘∅)))
89 oveq2 7361 . . . . . . . . 9 (𝑥 = (𝑐‘∅) → (𝑘𝑥) = (𝑘 − (𝑐‘∅)))
9089fveq2d 6830 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐺)‘(𝑘𝑥)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
9188, 90oveq12d 7371 . . . . . . 7 (𝑥 = (𝑐‘∅) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
9285, 86, 87, 91fmptco 7067 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
93 simpll2 1214 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐹𝐵)
9443fvcoe1 22108 . . . . . . . . 9 ((𝐹𝐵𝑐 ∈ (ℕ0m 1o)) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
9593, 82, 94syl2anc 584 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
96 df1o2 8402 . . . . . . . . . . . . . 14 1o = {∅}
97 0ex 5249 . . . . . . . . . . . . . 14 ∅ ∈ V
9896, 2, 97mapsnconst 8826 . . . . . . . . . . . . 13 (𝑐 ∈ (ℕ0m 1o) → 𝑐 = (1o × {(𝑐‘∅)}))
9982, 98syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 = (1o × {(𝑐‘∅)}))
10099oveq2d 7369 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})))
1013a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 1o ∈ On)
102 vex 3442 . . . . . . . . . . . . 13 𝑘 ∈ V
103102a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ V)
104 fvexd 6841 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ V)
105101, 103, 104ofc12 7647 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})) = (1o × {(𝑘 − (𝑐‘∅))}))
106100, 105eqtrd 2764 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = (1o × {(𝑘 − (𝑐‘∅))}))
107106fveq2d 6830 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
108 simpll3 1215 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐺𝐵)
109 fznn0sub 13477 . . . . . . . . . . 11 ((𝑐‘∅) ∈ (0...𝑘) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11085, 109syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11150coe1fv 22107 . . . . . . . . . 10 ((𝐺𝐵 ∧ (𝑘 − (𝑐‘∅)) ∈ ℕ0) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
112108, 110, 111syl2anc 584 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
113107, 112eqtr4d 2767 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
11495, 113oveq12d 7371 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
115114mpteq2dva 5188 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
11692, 115eqtr4d 2767 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
117116oveq2d 7369 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
11875, 117eqtrd 2764 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
119118mpteq2dva 5188 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
12026, 33, 1193eqtr4d 2774 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  dom cdm 5623  ccom 5627  Oncon0 6311  Fun wfun 6480  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  f cof 7615  r cofr 7616   supp csupp 8100  1oc1o 8388  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  0cc0 11028  cle 11169  cmin 11365  0cn0 12402  ...cfz 13428  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  CMndccmn 19677  Ringcrg 20136   mPwSer cmps 21829  PwSer1cps1 22075  coe1cco1 22078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-mulg 18965  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-psr 21834  df-opsr 21838  df-psr1 22080  df-coe1 22083
This theorem is referenced by:  coe1mul  22172
  Copyright terms: Public domain W3C validator