Step | Hyp | Ref
| Expression |
1 | | fconst6g 6557 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ (1o × {𝑘}):1o⟶ℕ0) |
2 | | nn0ex 11945 |
. . . . . 6
⊢
ℕ0 ∈ V |
3 | | 1on 8124 |
. . . . . . 7
⊢
1o ∈ On |
4 | 3 | elexi 3429 |
. . . . . 6
⊢
1o ∈ V |
5 | 2, 4 | elmap 8458 |
. . . . 5
⊢
((1o × {𝑘}) ∈ (ℕ0
↑m 1o) ↔ (1o × {𝑘}):1o⟶ℕ0) |
6 | 1, 5 | sylibr 237 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (1o × {𝑘}) ∈ (ℕ0
↑m 1o)) |
7 | 6 | adantl 485 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(1o × {𝑘})
∈ (ℕ0 ↑m 1o)) |
8 | | eqidd 2759 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦
(1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦
(1o × {𝑘}))) |
9 | | eqid 2758 |
. . . 4
⊢
(1o mPwSer 𝑅) = (1o mPwSer 𝑅) |
10 | | coe1mul2.s |
. . . . 5
⊢ 𝑆 =
(PwSer1‘𝑅) |
11 | | coe1mul2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
12 | 10, 11, 9 | psr1bas2 20919 |
. . . 4
⊢ 𝐵 = (Base‘(1o
mPwSer 𝑅)) |
13 | | coe1mul2.u |
. . . 4
⊢ · =
(.r‘𝑅) |
14 | | coe1mul2.t |
. . . . 5
⊢ ∙ =
(.r‘𝑆) |
15 | 10, 9, 14 | psr1mulr 20953 |
. . . 4
⊢ ∙ =
(.r‘(1o mPwSer 𝑅)) |
16 | | psr1baslem 20914 |
. . . 4
⊢
(ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0
↑m 1o) ∣ (◡𝑎 “ ℕ) ∈
Fin} |
17 | | simp2 1134 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐹 ∈ 𝐵) |
18 | | simp3 1135 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → 𝐺 ∈ 𝐵) |
19 | 9, 12, 13, 15, 16, 17, 18 | psrmulfval 20718 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝑏 ∈ (ℕ0
↑m 1o) ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐) · (𝐺‘(𝑏 ∘f − 𝑐))))))) |
20 | | breq2 5039 |
. . . . . 6
⊢ (𝑏 = (1o × {𝑘}) → (𝑑 ∘r ≤ 𝑏 ↔ 𝑑 ∘r ≤ (1o
× {𝑘}))) |
21 | 20 | rabbidv 3392 |
. . . . 5
⊢ (𝑏 = (1o × {𝑘}) → {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ 𝑏} = {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) |
22 | | fvoveq1 7178 |
. . . . . 6
⊢ (𝑏 = (1o × {𝑘}) → (𝐺‘(𝑏 ∘f − 𝑐)) = (𝐺‘((1o × {𝑘}) ∘f −
𝑐))) |
23 | 22 | oveq2d 7171 |
. . . . 5
⊢ (𝑏 = (1o × {𝑘}) → ((𝐹‘𝑐) · (𝐺‘(𝑏 ∘f − 𝑐))) = ((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐)))) |
24 | 21, 23 | mpteq12dv 5120 |
. . . 4
⊢ (𝑏 = (1o × {𝑘}) → (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐) · (𝐺‘(𝑏 ∘f − 𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐))))) |
25 | 24 | oveq2d 7171 |
. . 3
⊢ (𝑏 = (1o × {𝑘}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ 𝑏} ↦ ((𝐹‘𝑐) · (𝐺‘(𝑏 ∘f − 𝑐))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐)))))) |
26 | 7, 8, 19, 25 | fmptco 6887 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹 ∙ 𝐺) ∘ (𝑘 ∈ ℕ0 ↦
(1o × {𝑘}))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg
(𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐))))))) |
27 | 10 | psr1ring 20976 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑆 ∈ Ring) |
28 | 11, 14 | ringcl 19387 |
. . . 4
⊢ ((𝑆 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) ∈ 𝐵) |
29 | 27, 28 | syl3an1 1160 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) ∈ 𝐵) |
30 | | eqid 2758 |
. . . 4
⊢
(coe1‘(𝐹 ∙ 𝐺)) = (coe1‘(𝐹 ∙ 𝐺)) |
31 | | eqid 2758 |
. . . 4
⊢ (𝑘 ∈ ℕ0
↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦
(1o × {𝑘})) |
32 | 30, 11, 10, 31 | coe1fval3 20937 |
. . 3
⊢ ((𝐹 ∙ 𝐺) ∈ 𝐵 → (coe1‘(𝐹 ∙ 𝐺)) = ((𝐹 ∙ 𝐺) ∘ (𝑘 ∈ ℕ0 ↦
(1o × {𝑘})))) |
33 | 29, 32 | syl 17 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = ((𝐹 ∙ 𝐺) ∘ (𝑘 ∈ ℕ0 ↦
(1o × {𝑘})))) |
34 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
35 | | eqid 2758 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
36 | | simpl1 1188 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) |
37 | | ringcmn 19407 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
38 | 36, 37 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd) |
39 | | fzfi 13394 |
. . . . . 6
⊢
(0...𝑘) ∈
Fin |
40 | 39 | a1i 11 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) ∈
Fin) |
41 | | simpll1 1209 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑅 ∈ Ring) |
42 | | simpll2 1210 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐹 ∈ 𝐵) |
43 | | eqid 2758 |
. . . . . . . . . 10
⊢
(coe1‘𝐹) = (coe1‘𝐹) |
44 | 43, 11, 10, 34 | coe1f2 20938 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐵 → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
45 | 42, 44 | syl 17 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1‘𝐹):ℕ0⟶(Base‘𝑅)) |
46 | | elfznn0 13054 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℕ0) |
47 | 46 | adantl 485 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑥 ∈ ℕ0) |
48 | 45, 47 | ffvelrnd 6848 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1‘𝐹)‘𝑥) ∈ (Base‘𝑅)) |
49 | | simpll3 1211 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐺 ∈ 𝐵) |
50 | | eqid 2758 |
. . . . . . . . . 10
⊢
(coe1‘𝐺) = (coe1‘𝐺) |
51 | 50, 11, 10, 34 | coe1f2 20938 |
. . . . . . . . 9
⊢ (𝐺 ∈ 𝐵 → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
52 | 49, 51 | syl 17 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1‘𝐺):ℕ0⟶(Base‘𝑅)) |
53 | | fznn0sub 12993 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0...𝑘) → (𝑘 − 𝑥) ∈
ℕ0) |
54 | 53 | adantl 485 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (𝑘 − 𝑥) ∈
ℕ0) |
55 | 52, 54 | ffvelrnd 6848 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1‘𝐺)‘(𝑘 − 𝑥)) ∈ (Base‘𝑅)) |
56 | 34, 13 | ringcl 19387 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧
((coe1‘𝐹)‘𝑥) ∈ (Base‘𝑅) ∧ ((coe1‘𝐺)‘(𝑘 − 𝑥)) ∈ (Base‘𝑅)) → (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥))) ∈ (Base‘𝑅)) |
57 | 41, 48, 55, 56 | syl3anc 1368 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥))) ∈ (Base‘𝑅)) |
58 | 57 | fmpttd 6875 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))):(0...𝑘)⟶(Base‘𝑅)) |
59 | 39 | elexi 3429 |
. . . . . . . . 9
⊢
(0...𝑘) ∈
V |
60 | 59 | mptex 6982 |
. . . . . . . 8
⊢ (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∈ V |
61 | | funmpt 6377 |
. . . . . . . 8
⊢ Fun
(𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) |
62 | | fvex 6675 |
. . . . . . . 8
⊢
(0g‘𝑅) ∈ V |
63 | 60, 61, 62 | 3pm3.2i 1336 |
. . . . . . 7
⊢ ((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∧ (0g‘𝑅) ∈ V) |
64 | | suppssdm 7856 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) supp (0g‘𝑅)) ⊆ dom (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) |
65 | | eqid 2758 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) |
66 | 65 | dmmptss 6074 |
. . . . . . . . 9
⊢ dom
(𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ⊆ (0...𝑘) |
67 | 64, 66 | sstri 3903 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) supp (0g‘𝑅)) ⊆ (0...𝑘) |
68 | 39, 67 | pm3.2i 474 |
. . . . . . 7
⊢
((0...𝑘) ∈ Fin
∧ ((𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) supp (0g‘𝑅)) ⊆ (0...𝑘)) |
69 | | suppssfifsupp 8886 |
. . . . . . 7
⊢ ((((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∧ (0g‘𝑅) ∈ V) ∧ ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) supp (0g‘𝑅)) ⊆ (0...𝑘))) → (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) finSupp (0g‘𝑅)) |
70 | 63, 68, 69 | mp2an 691 |
. . . . . 6
⊢ (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) finSupp (0g‘𝑅) |
71 | 70 | a1i 11 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) finSupp (0g‘𝑅)) |
72 | | eqid 2758 |
. . . . . . 7
⊢ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} = {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} |
73 | 72 | coe1mul2lem2 20997 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅)):{𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}–1-1-onto→(0...𝑘)) |
74 | 73 | adantl 485 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅)):{𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}–1-1-onto→(0...𝑘)) |
75 | 34, 35, 38, 40, 58, 71, 74 | gsumf1o 19109 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg
(𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥))))) = (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅))))) |
76 | | breq1 5038 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑑 ∘r ≤ (1o
× {𝑘}) ↔ 𝑐 ∘r ≤
(1o × {𝑘}))) |
77 | 76 | elrab 3604 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↔ (𝑐 ∈ (ℕ0
↑m 1o) ∧ 𝑐 ∘r ≤ (1o
× {𝑘}))) |
78 | 77 | simprbi 500 |
. . . . . . . . 9
⊢ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} → 𝑐 ∘r ≤
(1o × {𝑘})) |
79 | 78 | adantl 485 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) → 𝑐 ∘r ≤
(1o × {𝑘})) |
80 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) → 𝑘 ∈
ℕ0) |
81 | | elrabi 3598 |
. . . . . . . . . 10
⊢ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} → 𝑐 ∈ (ℕ0
↑m 1o)) |
82 | 81 | adantl 485 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) → 𝑐 ∈ (ℕ0
↑m 1o)) |
83 | | coe1mul2lem1 20996 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑐 ∈
(ℕ0 ↑m 1o)) → (𝑐 ∘r ≤
(1o × {𝑘})
↔ (𝑐‘∅)
∈ (0...𝑘))) |
84 | 80, 82, 83 | syl2anc 587 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
(𝑐 ∘r ≤
(1o × {𝑘})
↔ (𝑐‘∅)
∈ (0...𝑘))) |
85 | 79, 84 | mpbid 235 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
(𝑐‘∅) ∈
(0...𝑘)) |
86 | | eqidd 2759 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅)) = (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅))) |
87 | | eqidd 2759 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥))))) |
88 | | fveq2 6662 |
. . . . . . . 8
⊢ (𝑥 = (𝑐‘∅) →
((coe1‘𝐹)‘𝑥) = ((coe1‘𝐹)‘(𝑐‘∅))) |
89 | | oveq2 7163 |
. . . . . . . . 9
⊢ (𝑥 = (𝑐‘∅) → (𝑘 − 𝑥) = (𝑘 − (𝑐‘∅))) |
90 | 89 | fveq2d 6666 |
. . . . . . . 8
⊢ (𝑥 = (𝑐‘∅) →
((coe1‘𝐺)‘(𝑘 − 𝑥)) = ((coe1‘𝐺)‘(𝑘 − (𝑐‘∅)))) |
91 | 88, 90 | oveq12d 7173 |
. . . . . . 7
⊢ (𝑥 = (𝑐‘∅) →
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥))) = (((coe1‘𝐹)‘(𝑐‘∅)) ·
((coe1‘𝐺)‘(𝑘 − (𝑐‘∅))))) |
92 | 85, 86, 87, 91 | fmptco 6887 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅))) =
(𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(((coe1‘𝐹)‘(𝑐‘∅)) ·
((coe1‘𝐺)‘(𝑘 − (𝑐‘∅)))))) |
93 | | simpll2 1210 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) → 𝐹 ∈ 𝐵) |
94 | 43 | fvcoe1 20936 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐵 ∧ 𝑐 ∈ (ℕ0
↑m 1o)) → (𝐹‘𝑐) = ((coe1‘𝐹)‘(𝑐‘∅))) |
95 | 93, 82, 94 | syl2anc 587 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
(𝐹‘𝑐) = ((coe1‘𝐹)‘(𝑐‘∅))) |
96 | | df1o2 8131 |
. . . . . . . . . . . . . 14
⊢
1o = {∅} |
97 | | 0ex 5180 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ V |
98 | 96, 2, 97 | mapsnconst 8479 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (ℕ0
↑m 1o) → 𝑐 = (1o × {(𝑐‘∅)})) |
99 | 82, 98 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) → 𝑐 = (1o ×
{(𝑐‘∅)})) |
100 | 99 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
((1o × {𝑘}) ∘f − 𝑐) = ((1o ×
{𝑘}) ∘f
− (1o × {(𝑐‘∅)}))) |
101 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
1o ∈ On) |
102 | | vex 3413 |
. . . . . . . . . . . . 13
⊢ 𝑘 ∈ V |
103 | 102 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) → 𝑘 ∈ V) |
104 | | fvexd 6677 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
(𝑐‘∅) ∈
V) |
105 | 101, 103,
104 | ofc12 7437 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
((1o × {𝑘}) ∘f − (1o
× {(𝑐‘∅)})) = (1o ×
{(𝑘 − (𝑐‘∅))})) |
106 | 100, 105 | eqtrd 2793 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
((1o × {𝑘}) ∘f − 𝑐) = (1o ×
{(𝑘 − (𝑐‘∅))})) |
107 | 106 | fveq2d 6666 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
(𝐺‘((1o
× {𝑘})
∘f − 𝑐)) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))}))) |
108 | | simpll3 1211 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) → 𝐺 ∈ 𝐵) |
109 | | fznn0sub 12993 |
. . . . . . . . . . 11
⊢ ((𝑐‘∅) ∈
(0...𝑘) → (𝑘 − (𝑐‘∅)) ∈
ℕ0) |
110 | 85, 109 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
(𝑘 − (𝑐‘∅)) ∈
ℕ0) |
111 | 50 | coe1fv 20935 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ 𝐵 ∧ (𝑘 − (𝑐‘∅)) ∈ ℕ0)
→ ((coe1‘𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))}))) |
112 | 108, 110,
111 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
((coe1‘𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))}))) |
113 | 107, 112 | eqtr4d 2796 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
(𝐺‘((1o
× {𝑘})
∘f − 𝑐)) = ((coe1‘𝐺)‘(𝑘 − (𝑐‘∅)))) |
114 | 95, 113 | oveq12d 7173 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})}) →
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐))) =
(((coe1‘𝐹)‘(𝑐‘∅)) ·
((coe1‘𝐺)‘(𝑘 − (𝑐‘∅))))) |
115 | 114 | mpteq2dva 5130 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(((coe1‘𝐹)‘(𝑐‘∅)) ·
((coe1‘𝐺)‘(𝑘 − (𝑐‘∅)))))) |
116 | 92, 115 | eqtr4d 2796 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅))) =
(𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐))))) |
117 | 116 | oveq2d 7171 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg
((𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
(𝑐‘∅)))) =
(𝑅
Σg (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐)))))) |
118 | 75, 117 | eqtrd 2793 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg
(𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐)))))) |
119 | 118 | mpteq2dva 5130 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg
(𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥)))))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg
(𝑐 ∈ {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} ↦
((𝐹‘𝑐) · (𝐺‘((1o × {𝑘}) ∘f −
𝑐))))))) |
120 | 26, 33, 119 | 3eqtr4d 2803 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg
(𝑥 ∈ (0...𝑘) ↦
(((coe1‘𝐹)‘𝑥) ·
((coe1‘𝐺)‘(𝑘 − 𝑥))))))) |