MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2 Structured version   Visualization version   GIF version

Theorem coe1mul2 20439
Description: The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1mul2.s 𝑆 = (PwSer1𝑅)
coe1mul2.t = (.r𝑆)
coe1mul2.u · = (.r𝑅)
coe1mul2.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
coe1mul2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   · ,𝑘,𝑥   𝑘,𝐺,𝑥   𝑅,𝑘,𝑥   ,𝑘
Allowed substitution hints:   𝑆(𝑥,𝑘)   (𝑥)

Proof of Theorem coe1mul2
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6570 . . . . 5 (𝑘 ∈ ℕ0 → (1o × {𝑘}):1o⟶ℕ0)
2 nn0ex 11906 . . . . . 6 0 ∈ V
3 1on 8111 . . . . . . 7 1o ∈ On
43elexi 3515 . . . . . 6 1o ∈ V
52, 4elmap 8437 . . . . 5 ((1o × {𝑘}) ∈ (ℕ0m 1o) ↔ (1o × {𝑘}):1o⟶ℕ0)
61, 5sylibr 236 . . . 4 (𝑘 ∈ ℕ0 → (1o × {𝑘}) ∈ (ℕ0m 1o))
76adantl 484 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (1o × {𝑘}) ∈ (ℕ0m 1o))
8 eqidd 2824 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})))
9 eqid 2823 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
10 coe1mul2.s . . . . 5 𝑆 = (PwSer1𝑅)
11 coe1mul2.b . . . . 5 𝐵 = (Base‘𝑆)
1210, 11, 9psr1bas2 20360 . . . 4 𝐵 = (Base‘(1o mPwSer 𝑅))
13 coe1mul2.u . . . 4 · = (.r𝑅)
14 coe1mul2.t . . . . 5 = (.r𝑆)
1510, 9, 14psr1mulr 20394 . . . 4 = (.r‘(1o mPwSer 𝑅))
16 psr1baslem 20355 . . . 4 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
17 simp2 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
18 simp3 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
199, 12, 13, 15, 16, 17, 18psrmulfval 20167 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))))))
20 breq2 5072 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝑑r𝑏𝑑r ≤ (1o × {𝑘})))
2120rabbidv 3482 . . . . 5 (𝑏 = (1o × {𝑘}) → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})})
22 fvoveq1 7181 . . . . . 6 (𝑏 = (1o × {𝑘}) → (𝐺‘(𝑏f𝑐)) = (𝐺‘((1o × {𝑘}) ∘f𝑐)))
2322oveq2d 7174 . . . . 5 (𝑏 = (1o × {𝑘}) → ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))) = ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))
2421, 23mpteq12dv 5153 . . . 4 (𝑏 = (1o × {𝑘}) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
2524oveq2d 7174 . . 3 (𝑏 = (1o × {𝑘}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r𝑏} ↦ ((𝐹𝑐) · (𝐺‘(𝑏f𝑐))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
267, 8, 19, 25fmptco 6893 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
2710psr1ring 20417 . . . 4 (𝑅 ∈ Ring → 𝑆 ∈ Ring)
2811, 14ringcl 19313 . . . 4 ((𝑆 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
2927, 28syl3an1 1159 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) ∈ 𝐵)
30 eqid 2823 . . . 4 (coe1‘(𝐹 𝐺)) = (coe1‘(𝐹 𝐺))
31 eqid 2823 . . . 4 (𝑘 ∈ ℕ0 ↦ (1o × {𝑘})) = (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))
3230, 11, 10, 31coe1fval3 20378 . . 3 ((𝐹 𝐺) ∈ 𝐵 → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
3329, 32syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = ((𝐹 𝐺) ∘ (𝑘 ∈ ℕ0 ↦ (1o × {𝑘}))))
34 eqid 2823 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
35 eqid 2823 . . . . 5 (0g𝑅) = (0g𝑅)
36 simpl1 1187 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring)
37 ringcmn 19333 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
3836, 37syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ CMnd)
39 fzfi 13343 . . . . . 6 (0...𝑘) ∈ Fin
4039a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
41 simpll1 1208 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑅 ∈ Ring)
42 simpll2 1209 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐹𝐵)
43 eqid 2823 . . . . . . . . . 10 (coe1𝐹) = (coe1𝐹)
4443, 11, 10, 34coe1f2 20379 . . . . . . . . 9 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
4542, 44syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐹):ℕ0⟶(Base‘𝑅))
46 elfznn0 13003 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → 𝑥 ∈ ℕ0)
4746adantl 484 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝑥 ∈ ℕ0)
4845, 47ffvelrnd 6854 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅))
49 simpll3 1210 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → 𝐺𝐵)
50 eqid 2823 . . . . . . . . . 10 (coe1𝐺) = (coe1𝐺)
5150, 11, 10, 34coe1f2 20379 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
5249, 51syl 17 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
53 fznn0sub 12942 . . . . . . . . 9 (𝑥 ∈ (0...𝑘) → (𝑘𝑥) ∈ ℕ0)
5453adantl 484 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (𝑘𝑥) ∈ ℕ0)
5552, 54ffvelrnd 6854 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅))
5634, 13ringcl 19313 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((coe1𝐹)‘𝑥) ∈ (Base‘𝑅) ∧ ((coe1𝐺)‘(𝑘𝑥)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5741, 48, 55, 56syl3anc 1367 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑥 ∈ (0...𝑘)) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) ∈ (Base‘𝑅))
5857fmpttd 6881 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))):(0...𝑘)⟶(Base‘𝑅))
5939elexi 3515 . . . . . . . . 9 (0...𝑘) ∈ V
6059mptex 6988 . . . . . . . 8 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V
61 funmpt 6395 . . . . . . . 8 Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
62 fvex 6685 . . . . . . . 8 (0g𝑅) ∈ V
6360, 61, 623pm3.2i 1335 . . . . . . 7 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V)
64 suppssdm 7845 . . . . . . . . 9 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
65 eqid 2823 . . . . . . . . . 10 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))
6665dmmptss 6097 . . . . . . . . 9 dom (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ⊆ (0...𝑘)
6764, 66sstri 3978 . . . . . . . 8 ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘)
6839, 67pm3.2i 473 . . . . . . 7 ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))
69 suppssfifsupp 8850 . . . . . . 7 ((((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∈ V ∧ Fun (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ((0...𝑘) ∈ Fin ∧ ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) supp (0g𝑅)) ⊆ (0...𝑘))) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
7063, 68, 69mp2an 690 . . . . . 6 (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅)
7170a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) finSupp (0g𝑅))
72 eqid 2823 . . . . . . 7 {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
7372coe1mul2lem2 20438 . . . . . 6 (𝑘 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7473adantl 484 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)):{𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}–1-1-onto→(0...𝑘))
7534, 35, 38, 40, 58, 71, 74gsumf1o 19038 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))))
76 breq1 5071 . . . . . . . . . . 11 (𝑑 = 𝑐 → (𝑑r ≤ (1o × {𝑘}) ↔ 𝑐r ≤ (1o × {𝑘})))
7776elrab 3682 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↔ (𝑐 ∈ (ℕ0m 1o) ∧ 𝑐r ≤ (1o × {𝑘})))
7877simprbi 499 . . . . . . . . 9 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐r ≤ (1o × {𝑘}))
7978adantl 484 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐r ≤ (1o × {𝑘}))
80 simplr 767 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ ℕ0)
81 elrabi 3677 . . . . . . . . . 10 (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} → 𝑐 ∈ (ℕ0m 1o))
8281adantl 484 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 ∈ (ℕ0m 1o))
83 coe1mul2lem1 20437 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑐 ∈ (ℕ0m 1o)) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8480, 82, 83syl2anc 586 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐r ≤ (1o × {𝑘}) ↔ (𝑐‘∅) ∈ (0...𝑘)))
8579, 84mpbid 234 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ (0...𝑘))
86 eqidd 2824 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))
87 eqidd 2824 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) = (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))
88 fveq2 6672 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐹)‘𝑥) = ((coe1𝐹)‘(𝑐‘∅)))
89 oveq2 7166 . . . . . . . . 9 (𝑥 = (𝑐‘∅) → (𝑘𝑥) = (𝑘 − (𝑐‘∅)))
9089fveq2d 6676 . . . . . . . 8 (𝑥 = (𝑐‘∅) → ((coe1𝐺)‘(𝑘𝑥)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
9188, 90oveq12d 7176 . . . . . . 7 (𝑥 = (𝑐‘∅) → (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
9285, 86, 87, 91fmptco 6893 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
93 simpll2 1209 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐹𝐵)
9443fvcoe1 20377 . . . . . . . . 9 ((𝐹𝐵𝑐 ∈ (ℕ0m 1o)) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
9593, 82, 94syl2anc 586 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐹𝑐) = ((coe1𝐹)‘(𝑐‘∅)))
96 df1o2 8118 . . . . . . . . . . . . . 14 1o = {∅}
97 0ex 5213 . . . . . . . . . . . . . 14 ∅ ∈ V
9896, 2, 97mapsnconst 8458 . . . . . . . . . . . . 13 (𝑐 ∈ (ℕ0m 1o) → 𝑐 = (1o × {(𝑐‘∅)}))
9982, 98syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑐 = (1o × {(𝑐‘∅)}))
10099oveq2d 7174 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})))
1013a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 1o ∈ On)
102 vex 3499 . . . . . . . . . . . . 13 𝑘 ∈ V
103102a1i 11 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝑘 ∈ V)
104 fvexd 6687 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑐‘∅) ∈ V)
105101, 103, 104ofc12 7436 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f − (1o × {(𝑐‘∅)})) = (1o × {(𝑘 − (𝑐‘∅))}))
106100, 105eqtrd 2858 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((1o × {𝑘}) ∘f𝑐) = (1o × {(𝑘 − (𝑐‘∅))}))
107106fveq2d 6676 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
108 simpll3 1210 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → 𝐺𝐵)
109 fznn0sub 12942 . . . . . . . . . . 11 ((𝑐‘∅) ∈ (0...𝑘) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11085, 109syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝑘 − (𝑐‘∅)) ∈ ℕ0)
11150coe1fv 20376 . . . . . . . . . 10 ((𝐺𝐵 ∧ (𝑘 − (𝑐‘∅)) ∈ ℕ0) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
112108, 110, 111syl2anc 586 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((coe1𝐺)‘(𝑘 − (𝑐‘∅))) = (𝐺‘(1o × {(𝑘 − (𝑐‘∅))})))
113107, 112eqtr4d 2861 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → (𝐺‘((1o × {𝑘}) ∘f𝑐)) = ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))
11495, 113oveq12d 7176 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) ∧ 𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}) → ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))) = (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅)))))
115114mpteq2dva 5163 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (((coe1𝐹)‘(𝑐‘∅)) · ((coe1𝐺)‘(𝑘 − (𝑐‘∅))))))
11692, 115eqtr4d 2861 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅))) = (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))
117116oveq2d 7174 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg ((𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))) ∘ (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ (𝑐‘∅)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
11875, 117eqtrd 2858 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑘 ∈ ℕ0) → (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥))))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐))))))
119118mpteq2dva 5163 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑐 ∈ {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} ↦ ((𝐹𝑐) · (𝐺‘((1o × {𝑘}) ∘f𝑐)))))))
12026, 33, 1193eqtr4d 2868 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (coe1‘(𝐹 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1𝐹)‘𝑥) · ((coe1𝐺)‘(𝑘𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3144  Vcvv 3496  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  dom cdm 5557  ccom 5561  Oncon0 6193  Fun wfun 6351  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  f cof 7409  r cofr 7410   supp csupp 7832  1oc1o 8097  m cmap 8408  Fincfn 8511   finSupp cfsupp 8835  0cc0 10539  cle 10678  cmin 10872  0cn0 11900  ...cfz 12895  Basecbs 16485  .rcmulr 16568  0gc0g 16715   Σg cgsu 16716  CMndccmn 18908  Ringcrg 19299   mPwSer cmps 20133  PwSer1cps1 20345  coe1cco1 20348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-psr 20138  df-opsr 20142  df-psr1 20350  df-coe1 20353
This theorem is referenced by:  coe1mul  20440
  Copyright terms: Public domain W3C validator