| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsnf1o3 | Structured version Visualization version GIF version | ||
| Description: Explicit bijection in the reverse of mapsnf1o2 8867. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsnf1o3.f | ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| Ref | Expression |
|---|---|
| mapsnf1o3 | ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
| 2 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 4 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
| 5 | 1, 2, 3, 4 | mapsnf1o2 8867 | . . 3 ⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| 6 | f1ocnv 6812 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑m 𝑆)–1-1-onto→𝐵 → ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
| 8 | mapsnf1o3.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | |
| 9 | 1, 2, 3, 4 | mapsncnv 8866 | . . . 4 ⊢ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 10 | 8, 9 | eqtr4i 2755 | . . 3 ⊢ 𝐹 = ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
| 11 | f1oeq1 6788 | . . 3 ⊢ (𝐹 = ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) → (𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆)) |
| 13 | 7, 12 | mpbir 231 | 1 ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: coe1f2 22094 coe1add 22150 evls1rhmlem 22208 evl1sca 22221 pf1ind 22242 ismrer1 37832 |
| Copyright terms: Public domain | W3C validator |