MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o3 Structured version   Visualization version   GIF version

Theorem mapsnf1o3 8845
Description: Explicit bijection in the reverse of mapsnf1o2 8844. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsnf1o3.f 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
Assertion
Ref Expression
mapsnf1o3 𝐹:𝐵1-1-onto→(𝐵m 𝑆)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem mapsnf1o3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4 𝑆 = {𝑋}
2 mapsncnv.b . . . 4 𝐵 ∈ V
3 mapsncnv.x . . . 4 𝑋 ∈ V
4 eqid 2729 . . . 4 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
51, 2, 3, 4mapsnf1o2 8844 . . 3 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):(𝐵m 𝑆)–1-1-onto𝐵
6 f1ocnv 6794 . . 3 ((𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):(𝐵m 𝑆)–1-1-onto𝐵(𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆))
75, 6ax-mp 5 . 2 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆)
8 mapsnf1o3.f . . . 4 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
91, 2, 3, 4mapsncnv 8843 . . . 4 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
108, 9eqtr4i 2755 . . 3 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
11 f1oeq1 6770 . . 3 (𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) → (𝐹:𝐵1-1-onto→(𝐵m 𝑆) ↔ (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆)))
1210, 11ax-mp 5 . 2 (𝐹:𝐵1-1-onto→(𝐵m 𝑆) ↔ (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆))
137, 12mpbir 231 1 𝐹:𝐵1-1-onto→(𝐵m 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  m cmap 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by:  coe1f2  22127  coe1add  22183  evls1rhmlem  22241  evl1sca  22254  pf1ind  22275  ismrer1  37825
  Copyright terms: Public domain W3C validator