MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o3 Structured version   Visualization version   GIF version

Theorem mapsnf1o3 8868
Description: Explicit bijection in the reverse of mapsnf1o2 8867. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsnf1o3.f 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
Assertion
Ref Expression
mapsnf1o3 𝐹:𝐵1-1-onto→(𝐵m 𝑆)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem mapsnf1o3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4 𝑆 = {𝑋}
2 mapsncnv.b . . . 4 𝐵 ∈ V
3 mapsncnv.x . . . 4 𝑋 ∈ V
4 eqid 2729 . . . 4 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
51, 2, 3, 4mapsnf1o2 8867 . . 3 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):(𝐵m 𝑆)–1-1-onto𝐵
6 f1ocnv 6812 . . 3 ((𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):(𝐵m 𝑆)–1-1-onto𝐵(𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆))
75, 6ax-mp 5 . 2 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆)
8 mapsnf1o3.f . . . 4 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
91, 2, 3, 4mapsncnv 8866 . . . 4 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
108, 9eqtr4i 2755 . . 3 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
11 f1oeq1 6788 . . 3 (𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) → (𝐹:𝐵1-1-onto→(𝐵m 𝑆) ↔ (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆)))
1210, 11ax-mp 5 . 2 (𝐹:𝐵1-1-onto→(𝐵m 𝑆) ↔ (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆))
137, 12mpbir 231 1 𝐹:𝐵1-1-onto→(𝐵m 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  ccnv 5637  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  coe1f2  22094  coe1add  22150  evls1rhmlem  22208  evl1sca  22221  pf1ind  22242  ismrer1  37832
  Copyright terms: Public domain W3C validator