![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsnf1o3 | Structured version Visualization version GIF version |
Description: Explicit bijection in the reverse of mapsnf1o2 8887. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsnf1o3.f | ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
Ref | Expression |
---|---|
mapsnf1o3 | ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
2 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
3 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
4 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
5 | 1, 2, 3, 4 | mapsnf1o2 8887 | . . 3 ⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
6 | f1ocnv 6845 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑m 𝑆)–1-1-onto→𝐵 → ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
8 | mapsnf1o3.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | |
9 | 1, 2, 3, 4 | mapsncnv 8886 | . . . 4 ⊢ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
10 | 8, 9 | eqtr4i 2763 | . . 3 ⊢ 𝐹 = ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
11 | f1oeq1 6821 | . . 3 ⊢ (𝐹 = ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) → (𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆)) |
13 | 7, 12 | mpbir 230 | 1 ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4628 ↦ cmpt 5231 × cxp 5674 ◡ccnv 5675 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7408 ↑m cmap 8819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-map 8821 |
This theorem is referenced by: coe1f2 21732 coe1add 21785 evls1rhmlem 21839 evl1sca 21852 pf1ind 21873 ismrer1 36701 |
Copyright terms: Public domain | W3C validator |