| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapsnf1o3 | Structured version Visualization version GIF version | ||
| Description: Explicit bijection in the reverse of mapsnf1o2 8870. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsnf1o3.f | ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| Ref | Expression |
|---|---|
| mapsnf1o3 | ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
| 2 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 4 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) = (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) | |
| 5 | 1, 2, 3, 4 | mapsnf1o2 8870 | . . 3 ⊢ (𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑m 𝑆)–1-1-onto→𝐵 |
| 6 | f1ocnv 6815 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑m 𝑆)–1-1-onto→𝐵 → ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
| 8 | mapsnf1o3.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | |
| 9 | 1, 2, 3, 4 | mapsncnv 8869 | . . . 4 ⊢ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 10 | 8, 9 | eqtr4i 2756 | . . 3 ⊢ 𝐹 = ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) |
| 11 | f1oeq1 6791 | . . 3 ⊢ (𝐹 = ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)) → (𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑m 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑m 𝑆)) |
| 13 | 7, 12 | mpbir 231 | 1 ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑m 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: coe1f2 22101 coe1add 22157 evls1rhmlem 22215 evl1sca 22228 pf1ind 22249 ismrer1 37839 |
| Copyright terms: Public domain | W3C validator |