![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsnf1o3 | Structured version Visualization version GIF version |
Description: Explicit bijection in the reverse of mapsnf1o2 8248. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
Ref | Expression |
---|---|
mapsncnv.s | ⊢ 𝑆 = {𝑋} |
mapsncnv.b | ⊢ 𝐵 ∈ V |
mapsncnv.x | ⊢ 𝑋 ∈ V |
mapsnf1o3.f | ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
Ref | Expression |
---|---|
mapsnf1o3 | ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
2 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
3 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
4 | eqid 2772 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
5 | 1, 2, 3, 4 | mapsnf1o2 8248 | . . 3 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
6 | f1ocnv 6450 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 → ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆)) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
8 | mapsnf1o3.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | |
9 | 1, 2, 3, 4 | mapsncnv 8247 | . . . 4 ⊢ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
10 | 8, 9 | eqtr4i 2799 | . . 3 ⊢ 𝐹 = ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
11 | f1oeq1 6427 | . . 3 ⊢ (𝐹 = ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) → (𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆))) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆)) |
13 | 7, 12 | mpbir 223 | 1 ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1507 ∈ wcel 2048 Vcvv 3409 {csn 4435 ↦ cmpt 5002 × cxp 5398 ◡ccnv 5399 –1-1-onto→wf1o 6181 ‘cfv 6182 (class class class)co 6970 ↑𝑚 cmap 8198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-map 8200 |
This theorem is referenced by: coe1f2 20070 coe1add 20125 evls1rhmlem 20177 evl1sca 20189 pf1ind 20210 ismrer1 34506 |
Copyright terms: Public domain | W3C validator |