MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o3 Structured version   Visualization version   GIF version

Theorem mapsnf1o3 8888
Description: Explicit bijection in the reverse of mapsnf1o2 8887. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsnf1o3.f 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
Assertion
Ref Expression
mapsnf1o3 𝐹:𝐵1-1-onto→(𝐵m 𝑆)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem mapsnf1o3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4 𝑆 = {𝑋}
2 mapsncnv.b . . . 4 𝐵 ∈ V
3 mapsncnv.x . . . 4 𝑋 ∈ V
4 eqid 2732 . . . 4 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
51, 2, 3, 4mapsnf1o2 8887 . . 3 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):(𝐵m 𝑆)–1-1-onto𝐵
6 f1ocnv 6845 . . 3 ((𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):(𝐵m 𝑆)–1-1-onto𝐵(𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆))
75, 6ax-mp 5 . 2 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆)
8 mapsnf1o3.f . . . 4 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
91, 2, 3, 4mapsncnv 8886 . . . 4 (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
108, 9eqtr4i 2763 . . 3 𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))
11 f1oeq1 6821 . . 3 (𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)) → (𝐹:𝐵1-1-onto→(𝐵m 𝑆) ↔ (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆)))
1210, 11ax-mp 5 . 2 (𝐹:𝐵1-1-onto→(𝐵m 𝑆) ↔ (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵m 𝑆))
137, 12mpbir 230 1 𝐹:𝐵1-1-onto→(𝐵m 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4628  cmpt 5231   × cxp 5674  ccnv 5675  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7408  m cmap 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821
This theorem is referenced by:  coe1f2  21732  coe1add  21785  evls1rhmlem  21839  evl1sca  21852  pf1ind  21873  ismrer1  36701
  Copyright terms: Public domain W3C validator