| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1f2 | Structured version Visualization version GIF version | ||
| Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1f2.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1f2.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
| coe1f2.k | ⊢ 𝐾 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| coe1f2 | ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1f2.p | . . . 4 ⊢ 𝑃 = (PwSer1‘𝑅) | |
| 2 | coe1f2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | coe1f2.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | 1, 2, 3 | psr1basf 22203 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶𝐾) |
| 5 | df1o2 8513 | . . . . 5 ⊢ 1o = {∅} | |
| 6 | nn0ex 12532 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 7 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
| 8 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) | |
| 9 | 5, 6, 7, 8 | mapsnf1o3 8935 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) |
| 10 | f1of 6848 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑m 1o)) | |
| 11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑m 1o) |
| 12 | fco 6760 | . . 3 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶𝐾 ∧ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑m 1o)) → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾) | |
| 13 | 4, 11, 12 | sylancl 586 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾) |
| 14 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
| 15 | 14, 2, 1, 8 | coe1fval3 22210 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})))) |
| 16 | 15 | feq1d 6720 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐴:ℕ0⟶𝐾 ↔ (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾)) |
| 17 | 13, 16 | mpbird 257 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4333 {csn 4626 ↦ cmpt 5225 × cxp 5683 ∘ ccom 5689 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 1oc1o 8499 ↑m cmap 8866 ℕ0cn0 12526 Basecbs 17247 PwSer1cps1 22176 coe1cco1 22179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-ple 17317 df-psr 21929 df-opsr 21933 df-psr1 22181 df-coe1 22184 |
| This theorem is referenced by: coe1f 22213 coe1mul2 22272 |
| Copyright terms: Public domain | W3C validator |