MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1f2 Structured version   Visualization version   GIF version

Theorem coe1f2 21130
Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
coe1f2.b 𝐵 = (Base‘𝑃)
coe1f2.p 𝑃 = (PwSer1𝑅)
coe1f2.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
coe1f2 (𝐹𝐵𝐴:ℕ0𝐾)

Proof of Theorem coe1f2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coe1f2.p . . . 4 𝑃 = (PwSer1𝑅)
2 coe1f2.b . . . 4 𝐵 = (Base‘𝑃)
3 coe1f2.k . . . 4 𝐾 = (Base‘𝑅)
41, 2, 3psr1basf 21122 . . 3 (𝐹𝐵𝐹:(ℕ0m 1o)⟶𝐾)
5 df1o2 8214 . . . . 5 1o = {∅}
6 nn0ex 12096 . . . . 5 0 ∈ V
7 0ex 5200 . . . . 5 ∅ ∈ V
8 eqid 2737 . . . . 5 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))
95, 6, 7, 8mapsnf1o3 8576 . . . 4 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ01-1-onto→(ℕ0m 1o)
10 f1of 6661 . . . 4 ((𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ01-1-onto→(ℕ0m 1o) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0m 1o))
119, 10ax-mp 5 . . 3 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0m 1o)
12 fco 6569 . . 3 ((𝐹:(ℕ0m 1o)⟶𝐾 ∧ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0m 1o)) → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0𝐾)
134, 11, 12sylancl 589 . 2 (𝐹𝐵 → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0𝐾)
14 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
1514, 2, 1, 8coe1fval3 21129 . . 3 (𝐹𝐵𝐴 = (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
1615feq1d 6530 . 2 (𝐹𝐵 → (𝐴:ℕ0𝐾 ↔ (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0𝐾))
1713, 16mpbird 260 1 (𝐹𝐵𝐴:ℕ0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  c0 4237  {csn 4541  cmpt 5135   × cxp 5549  ccom 5555  wf 6376  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  1oc1o 8195  m cmap 8508  0cn0 12090  Basecbs 16760  PwSer1cps1 21096  coe1cco1 21099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-tset 16821  df-ple 16822  df-psr 20868  df-opsr 20872  df-psr1 21101  df-coe1 21104
This theorem is referenced by:  coe1f  21132  coe1mul2  21190
  Copyright terms: Public domain W3C validator