![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1f2 | Structured version Visualization version GIF version |
Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1f2.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1f2.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
coe1f2.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
coe1f2 | ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1f2.p | . . . 4 ⊢ 𝑃 = (PwSer1‘𝑅) | |
2 | coe1f2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1f2.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | 1, 2, 3 | psr1basf 22120 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑m 1o)⟶𝐾) |
5 | df1o2 8494 | . . . . 5 ⊢ 1o = {∅} | |
6 | nn0ex 12509 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
8 | eqid 2728 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) | |
9 | 5, 6, 7, 8 | mapsnf1o3 8914 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) |
10 | f1of 6839 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑m 1o)) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑m 1o) |
12 | fco 6747 | . . 3 ⊢ ((𝐹:(ℕ0 ↑m 1o)⟶𝐾 ∧ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑m 1o)) → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾) | |
13 | 4, 11, 12 | sylancl 585 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾) |
14 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
15 | 14, 2, 1, 8 | coe1fval3 22127 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})))) |
16 | 15 | feq1d 6707 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐴:ℕ0⟶𝐾 ↔ (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾)) |
17 | 13, 16 | mpbird 257 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∅c0 4323 {csn 4629 ↦ cmpt 5231 × cxp 5676 ∘ ccom 5682 ⟶wf 6544 –1-1-onto→wf1o 6547 ‘cfv 6548 (class class class)co 7420 1oc1o 8480 ↑m cmap 8845 ℕ0cn0 12503 Basecbs 17180 PwSer1cps1 22094 coe1cco1 22097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-fz 13518 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-tset 17252 df-ple 17253 df-psr 21842 df-opsr 21846 df-psr1 22099 df-coe1 22102 |
This theorem is referenced by: coe1f 22130 coe1mul2 22188 |
Copyright terms: Public domain | W3C validator |