MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1f2 Structured version   Visualization version   GIF version

Theorem coe1f2 22094
Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
coe1fval.a 𝐴 = (coe1𝐹)
coe1f2.b 𝐵 = (Base‘𝑃)
coe1f2.p 𝑃 = (PwSer1𝑅)
coe1f2.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
coe1f2 (𝐹𝐵𝐴:ℕ0𝐾)

Proof of Theorem coe1f2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coe1f2.p . . . 4 𝑃 = (PwSer1𝑅)
2 coe1f2.b . . . 4 𝐵 = (Base‘𝑃)
3 coe1f2.k . . . 4 𝐾 = (Base‘𝑅)
41, 2, 3psr1basf 22086 . . 3 (𝐹𝐵𝐹:(ℕ0m 1o)⟶𝐾)
5 df1o2 8441 . . . . 5 1o = {∅}
6 nn0ex 12448 . . . . 5 0 ∈ V
7 0ex 5262 . . . . 5 ∅ ∈ V
8 eqid 2729 . . . . 5 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))
95, 6, 7, 8mapsnf1o3 8868 . . . 4 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ01-1-onto→(ℕ0m 1o)
10 f1of 6800 . . . 4 ((𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ01-1-onto→(ℕ0m 1o) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0m 1o))
119, 10ax-mp 5 . . 3 (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0m 1o)
12 fco 6712 . . 3 ((𝐹:(ℕ0m 1o)⟶𝐾 ∧ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0m 1o)) → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0𝐾)
134, 11, 12sylancl 586 . 2 (𝐹𝐵 → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0𝐾)
14 coe1fval.a . . . 4 𝐴 = (coe1𝐹)
1514, 2, 1, 8coe1fval3 22093 . . 3 (𝐹𝐵𝐴 = (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))))
1615feq1d 6670 . 2 (𝐹𝐵 → (𝐴:ℕ0𝐾 ↔ (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0𝐾))
1713, 16mpbird 257 1 (𝐹𝐵𝐴:ℕ0𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  c0 4296  {csn 4589  cmpt 5188   × cxp 5636  ccom 5642  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1oc1o 8427  m cmap 8799  0cn0 12442  Basecbs 17179  PwSer1cps1 22059  coe1cco1 22062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-ple 17240  df-psr 21818  df-opsr 21822  df-psr1 22064  df-coe1 22067
This theorem is referenced by:  coe1f  22096  coe1mul2  22155
  Copyright terms: Public domain W3C validator