![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1f2 | Structured version Visualization version GIF version |
Description: Functionality of univariate power series coefficient vectors. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
Ref | Expression |
---|---|
coe1fval.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1f2.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1f2.p | ⊢ 𝑃 = (PwSer1‘𝑅) |
coe1f2.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
coe1f2 | ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1f2.p | . . . 4 ⊢ 𝑃 = (PwSer1‘𝑅) | |
2 | coe1f2.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1f2.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | 1, 2, 3 | psr1basf 20084 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹:(ℕ0 ↑𝑚 1o)⟶𝐾) |
5 | df1o2 7916 | . . . . 5 ⊢ 1o = {∅} | |
6 | nn0ex 11712 | . . . . 5 ⊢ ℕ0 ∈ V | |
7 | 0ex 5064 | . . . . 5 ⊢ ∅ ∈ V | |
8 | eqid 2772 | . . . . 5 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) = (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})) | |
9 | 5, 6, 7, 8 | mapsnf1o3 8255 | . . . 4 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0–1-1-onto→(ℕ0 ↑𝑚 1o) |
10 | f1of 6441 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0–1-1-onto→(ℕ0 ↑𝑚 1o) → (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑𝑚 1o)) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑𝑚 1o) |
12 | fco 6358 | . . 3 ⊢ ((𝐹:(ℕ0 ↑𝑚 1o)⟶𝐾 ∧ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})):ℕ0⟶(ℕ0 ↑𝑚 1o)) → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾) | |
13 | 4, 11, 12 | sylancl 577 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾) |
14 | coe1fval.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
15 | 14, 2, 1, 8 | coe1fval3 20091 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥})))) |
16 | 15 | feq1d 6326 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐴:ℕ0⟶𝐾 ↔ (𝐹 ∘ (𝑥 ∈ ℕ0 ↦ (1o × {𝑥}))):ℕ0⟶𝐾)) |
17 | 13, 16 | mpbird 249 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ∅c0 4172 {csn 4435 ↦ cmpt 5004 × cxp 5401 ∘ ccom 5407 ⟶wf 6181 –1-1-onto→wf1o 6184 ‘cfv 6185 (class class class)co 6974 1oc1o 7896 ↑𝑚 cmap 8204 ℕ0cn0 11705 Basecbs 16337 PwSer1cps1 20058 coe1cco1 20061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-int 4746 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-of 7225 df-om 7395 df-1st 7499 df-2nd 7500 df-supp 7632 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-1o 7903 df-oadd 7907 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-fin 8308 df-fsupp 8627 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-3 11502 df-4 11503 df-5 11504 df-6 11505 df-7 11506 df-8 11507 df-9 11508 df-n0 11706 df-z 11792 df-dec 11910 df-uz 12057 df-fz 12707 df-struct 16339 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-plusg 16432 df-mulr 16433 df-sca 16435 df-vsca 16436 df-tset 16438 df-ple 16439 df-psr 19862 df-opsr 19866 df-psr1 20063 df-coe1 20066 |
This theorem is referenced by: coe1f 20094 coe1mul2 20152 |
Copyright terms: Public domain | W3C validator |