MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1rhmlem Structured version   Visualization version   GIF version

Theorem evls1rhmlem 22206
Description: Lemma for evl1rhm 22217 and evls1rhm 22207 (formerly part of the proof of evl1rhm 22217): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1rhmlem.b 𝐵 = (Base‘𝑅)
evl1rhmlem.t 𝑇 = (𝑅s 𝐵)
evl1rhmlem.f 𝐹 = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Assertion
Ref Expression
evls1rhmlem (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅s (𝐵m 1o)) RingHom 𝑇))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅   𝑥,𝑇
Allowed substitution hints:   𝑅(𝑦)   𝑇(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem evls1rhmlem
StepHypRef Expression
1 evl1rhmlem.f . . 3 𝐹 = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
2 ovex 7382 . . . . 5 (𝐵m 1o) ∈ V
3 eqid 2729 . . . . . 6 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
4 evl1rhmlem.b . . . . . 6 𝐵 = (Base‘𝑅)
53, 4pwsbas 17391 . . . . 5 ((𝑅 ∈ CRing ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
62, 5mpan2 691 . . . 4 (𝑅 ∈ CRing → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
76mpteq1d 5182 . . 3 (𝑅 ∈ CRing → (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (Base‘(𝑅s (𝐵m 1o))) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
81, 7eqtrid 2776 . 2 (𝑅 ∈ CRing → 𝐹 = (𝑥 ∈ (Base‘(𝑅s (𝐵m 1o))) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))))
9 evl1rhmlem.t . . 3 𝑇 = (𝑅s 𝐵)
10 eqid 2729 . . 3 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
11 crngring 20130 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
124fvexi 6836 . . . 4 𝐵 ∈ V
1312a1i 11 . . 3 (𝑅 ∈ CRing → 𝐵 ∈ V)
142a1i 11 . . 3 (𝑅 ∈ CRing → (𝐵m 1o) ∈ V)
15 df1o2 8395 . . . . 5 1o = {∅}
16 0ex 5246 . . . . 5 ∅ ∈ V
17 eqid 2729 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) = (𝑦𝐵 ↦ (1o × {𝑦}))
1815, 12, 16, 17mapsnf1o3 8822 . . . 4 (𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o)
19 f1of 6764 . . . 4 ((𝑦𝐵 ↦ (1o × {𝑦})):𝐵1-1-onto→(𝐵m 1o) → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
2018, 19mp1i 13 . . 3 (𝑅 ∈ CRing → (𝑦𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵m 1o))
219, 3, 10, 11, 13, 14, 20pwsco1rhm 20387 . 2 (𝑅 ∈ CRing → (𝑥 ∈ (Base‘(𝑅s (𝐵m 1o))) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑅s (𝐵m 1o)) RingHom 𝑇))
228, 21eqeltrd 2828 1 (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅s (𝐵m 1o)) RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  {csn 4577  cmpt 5173   × cxp 5617  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  1oc1o 8381  m cmap 8753  Basecbs 17120  s cpws 17350  CRingccrg 20119   RingHom crh 20354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-rhm 20357
This theorem is referenced by:  evls1rhm  22207  evl1rhm  22217
  Copyright terms: Public domain W3C validator