![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1rhmlem | Structured version Visualization version GIF version |
Description: Lemma for evl1rhm 22170 and evls1rhm 22160 (formerly part of the proof of evl1rhm 22170): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1rhmlem.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1rhmlem.t | ⊢ 𝑇 = (𝑅 ↑s 𝐵) |
evl1rhmlem.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Ref | Expression |
---|---|
evls1rhmlem | ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1rhmlem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
2 | ovex 7445 | . . . . 5 ⊢ (𝐵 ↑m 1o) ∈ V | |
3 | eqid 2731 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑m 1o)) = (𝑅 ↑s (𝐵 ↑m 1o)) | |
4 | evl1rhmlem.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | pwsbas 17440 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝐵 ↑m 1o) ∈ V) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
6 | 2, 5 | mpan2 688 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
7 | 6 | mpteq1d 5243 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))) |
8 | 1, 7 | eqtrid 2783 | . 2 ⊢ (𝑅 ∈ CRing → 𝐹 = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))) |
9 | evl1rhmlem.t | . . 3 ⊢ 𝑇 = (𝑅 ↑s 𝐵) | |
10 | eqid 2731 | . . 3 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) | |
11 | crngring 20146 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
12 | 4 | fvexi 6905 | . . . 4 ⊢ 𝐵 ∈ V |
13 | 12 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐵 ∈ V) |
14 | 2 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐵 ↑m 1o) ∈ V) |
15 | df1o2 8479 | . . . . 5 ⊢ 1o = {∅} | |
16 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
17 | eqid 2731 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) | |
18 | 15, 12, 16, 17 | mapsnf1o3 8895 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) |
19 | f1of 6833 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) | |
20 | 18, 19 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
21 | 9, 3, 10, 11, 13, 14, 20 | pwsco1rhm 20400 | . 2 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
22 | 8, 21 | eqeltrd 2832 | 1 ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 {csn 4628 ↦ cmpt 5231 × cxp 5674 ∘ ccom 5680 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7412 1oc1o 8465 ↑m cmap 8826 Basecbs 17151 ↑s cpws 17399 CRingccrg 20135 RingHom crh 20367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-prds 17400 df-pws 17402 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-minusg 18865 df-ghm 19135 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-rhm 20370 |
This theorem is referenced by: evls1rhm 22160 evl1rhm 22170 |
Copyright terms: Public domain | W3C validator |