![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1rhmlem | Structured version Visualization version GIF version |
Description: Lemma for evl1rhm 21851 and evls1rhm 21841 (formerly part of the proof of evl1rhm 21851): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1rhmlem.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1rhmlem.t | ⊢ 𝑇 = (𝑅 ↑s 𝐵) |
evl1rhmlem.f | ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Ref | Expression |
---|---|
evls1rhmlem | ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1rhmlem.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
2 | ovex 7442 | . . . . 5 ⊢ (𝐵 ↑m 1o) ∈ V | |
3 | eqid 2733 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑m 1o)) = (𝑅 ↑s (𝐵 ↑m 1o)) | |
4 | evl1rhmlem.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 3, 4 | pwsbas 17433 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝐵 ↑m 1o) ∈ V) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
6 | 2, 5 | mpan2 690 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
7 | 6 | mpteq1d 5244 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))) |
8 | 1, 7 | eqtrid 2785 | . 2 ⊢ (𝑅 ∈ CRing → 𝐹 = (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))) |
9 | evl1rhmlem.t | . . 3 ⊢ 𝑇 = (𝑅 ↑s 𝐵) | |
10 | eqid 2733 | . . 3 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) | |
11 | crngring 20068 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
12 | 4 | fvexi 6906 | . . . 4 ⊢ 𝐵 ∈ V |
13 | 12 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → 𝐵 ∈ V) |
14 | 2 | a1i 11 | . . 3 ⊢ (𝑅 ∈ CRing → (𝐵 ↑m 1o) ∈ V) |
15 | df1o2 8473 | . . . . 5 ⊢ 1o = {∅} | |
16 | 0ex 5308 | . . . . 5 ⊢ ∅ ∈ V | |
17 | eqid 2733 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) | |
18 | 15, 12, 16, 17 | mapsnf1o3 8889 | . . . 4 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) |
19 | f1of 6834 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵–1-1-onto→(𝐵 ↑m 1o) → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) | |
20 | 18, 19 | mp1i 13 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})):𝐵⟶(𝐵 ↑m 1o)) |
21 | 9, 3, 10, 11, 13, 14, 20 | pwsco1rhm 20277 | . 2 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
22 | 8, 21 | eqeltrd 2834 | 1 ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {csn 4629 ↦ cmpt 5232 × cxp 5675 ∘ ccom 5681 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 1oc1o 8459 ↑m cmap 8820 Basecbs 17144 ↑s cpws 17392 CRingccrg 20057 RingHom crh 20248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17387 df-prds 17393 df-pws 17395 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-grp 18822 df-minusg 18823 df-ghm 19090 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-rnghom 20251 |
This theorem is referenced by: evls1rhm 21841 evl1rhm 21851 |
Copyright terms: Public domain | W3C validator |