| Step | Hyp | Ref
| Expression |
| 1 | | mbfadd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 2 | | mbff 25660 |
. . . . . . . 8
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
| 4 | | elinel1 4201 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹) |
| 5 | | ffvelcdm 7101 |
. . . . . . 7
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ℂ) |
| 6 | 3, 4, 5 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹‘𝑥) ∈ ℂ) |
| 7 | | mbfadd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ MblFn) |
| 8 | | mbff 25660 |
. . . . . . . 8
⊢ (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ) |
| 9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺:dom 𝐺⟶ℂ) |
| 10 | | elinel2 4202 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺) |
| 11 | | ffvelcdm 7101 |
. . . . . . 7
⊢ ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) ∈ ℂ) |
| 12 | 9, 10, 11 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺‘𝑥) ∈ ℂ) |
| 13 | 6, 12 | negsubd 11626 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
| 14 | 13 | eqcomd 2743 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) − (𝐺‘𝑥)) = ((𝐹‘𝑥) + -(𝐺‘𝑥))) |
| 15 | 14 | mpteq2dva 5242 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) − (𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + -(𝐺‘𝑥)))) |
| 16 | 3 | ffnd 6737 |
. . . 4
⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
| 17 | 9 | ffnd 6737 |
. . . 4
⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
| 18 | | mbfdm 25661 |
. . . . 5
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
| 19 | 1, 18 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
| 20 | | mbfdm 25661 |
. . . . 5
⊢ (𝐺 ∈ MblFn → dom 𝐺 ∈ dom
vol) |
| 21 | 7, 20 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐺 ∈ dom vol) |
| 22 | | eqid 2737 |
. . . 4
⊢ (dom
𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺) |
| 23 | | eqidd 2738 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 24 | | eqidd 2738 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
| 25 | 16, 17, 19, 21, 22, 23, 24 | offval 7706 |
. . 3
⊢ (𝜑 → (𝐹 ∘f − 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))) |
| 26 | | inmbl 25577 |
. . . . 5
⊢ ((dom
𝐹 ∈ dom vol ∧ dom
𝐺 ∈ dom vol) →
(dom 𝐹 ∩ dom 𝐺) ∈ dom
vol) |
| 27 | 19, 21, 26 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) |
| 28 | 12 | negcld 11607 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → -(𝐺‘𝑥) ∈ ℂ) |
| 29 | | eqidd 2738 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
| 30 | | eqidd 2738 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) |
| 31 | 27, 6, 28, 29, 30 | offval2 7717 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + -(𝐺‘𝑥)))) |
| 32 | 15, 25, 31 | 3eqtr4d 2787 |
. 2
⊢ (𝜑 → (𝐹 ∘f − 𝐺) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)))) |
| 33 | | inss1 4237 |
. . . . 5
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 |
| 34 | | resmpt 6055 |
. . . . 5
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
| 35 | 33, 34 | mp1i 13 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
| 36 | 3 | feqmptd 6977 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
| 37 | 36, 1 | eqeltrrd 2842 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn) |
| 38 | | mbfres 25679 |
. . . . 5
⊢ (((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 39 | 37, 27, 38 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 40 | 35, 39 | eqeltrrd 2842 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∈ MblFn) |
| 41 | | inss2 4238 |
. . . . . 6
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 |
| 42 | | resmpt 6055 |
. . . . . 6
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
| 43 | 41, 42 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
| 44 | 9 | feqmptd 6977 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥))) |
| 45 | 44, 7 | eqeltrrd 2842 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn) |
| 46 | | mbfres 25679 |
. . . . . 6
⊢ (((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 47 | 45, 27, 46 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
| 48 | 43, 47 | eqeltrrd 2842 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) ∈ MblFn) |
| 49 | 12, 48 | mbfneg 25685 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)) ∈ MblFn) |
| 50 | 40, 49 | mbfadd 25696 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) ∈ MblFn) |
| 51 | 32, 50 | eqeltrd 2841 |
1
⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ MblFn) |