Step | Hyp | Ref
| Expression |
1 | | mbfadd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ MblFn) |
2 | | mbff 24694 |
. . . . . . . 8
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
4 | | elinel1 4125 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹) |
5 | | ffvelrn 6941 |
. . . . . . 7
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ℂ) |
6 | 3, 4, 5 | syl2an 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹‘𝑥) ∈ ℂ) |
7 | | mbfadd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ MblFn) |
8 | | mbff 24694 |
. . . . . . . 8
⊢ (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ) |
9 | 7, 8 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺:dom 𝐺⟶ℂ) |
10 | | elinel2 4126 |
. . . . . . 7
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺) |
11 | | ffvelrn 6941 |
. . . . . . 7
⊢ ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) ∈ ℂ) |
12 | 9, 10, 11 | syl2an 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺‘𝑥) ∈ ℂ) |
13 | 6, 12 | negsubd 11268 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) + -(𝐺‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
14 | 13 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) − (𝐺‘𝑥)) = ((𝐹‘𝑥) + -(𝐺‘𝑥))) |
15 | 14 | mpteq2dva 5170 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) − (𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + -(𝐺‘𝑥)))) |
16 | 3 | ffnd 6585 |
. . . 4
⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
17 | 9 | ffnd 6585 |
. . . 4
⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
18 | | mbfdm 24695 |
. . . . 5
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
19 | 1, 18 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
20 | | mbfdm 24695 |
. . . . 5
⊢ (𝐺 ∈ MblFn → dom 𝐺 ∈ dom
vol) |
21 | 7, 20 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐺 ∈ dom vol) |
22 | | eqid 2738 |
. . . 4
⊢ (dom
𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺) |
23 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
24 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
25 | 16, 17, 19, 21, 22, 23, 24 | offval 7520 |
. . 3
⊢ (𝜑 → (𝐹 ∘f − 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) − (𝐺‘𝑥)))) |
26 | | inmbl 24611 |
. . . . 5
⊢ ((dom
𝐹 ∈ dom vol ∧ dom
𝐺 ∈ dom vol) →
(dom 𝐹 ∩ dom 𝐺) ∈ dom
vol) |
27 | 19, 21, 26 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) |
28 | 12 | negcld 11249 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → -(𝐺‘𝑥) ∈ ℂ) |
29 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
30 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) |
31 | 27, 6, 28, 29, 30 | offval2 7531 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) + -(𝐺‘𝑥)))) |
32 | 15, 25, 31 | 3eqtr4d 2788 |
. 2
⊢ (𝜑 → (𝐹 ∘f − 𝐺) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)))) |
33 | | inss1 4159 |
. . . . 5
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 |
34 | | resmpt 5934 |
. . . . 5
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
35 | 33, 34 | mp1i 13 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
36 | 3 | feqmptd 6819 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
37 | 36, 1 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn) |
38 | | mbfres 24713 |
. . . . 5
⊢ (((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
39 | 37, 27, 38 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
40 | 35, 39 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∈ MblFn) |
41 | | inss2 4160 |
. . . . . 6
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 |
42 | | resmpt 5934 |
. . . . . 6
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
43 | 41, 42 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
44 | 9 | feqmptd 6819 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥))) |
45 | 44, 7 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn) |
46 | | mbfres 24713 |
. . . . . 6
⊢ (((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
47 | 45, 27, 46 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
48 | 43, 47 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) ∈ MblFn) |
49 | 12, 48 | mbfneg 24719 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥)) ∈ MblFn) |
50 | 40, 49 | mbfadd 24730 |
. 2
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺‘𝑥))) ∈ MblFn) |
51 | 32, 50 | eqeltrd 2839 |
1
⊢ (𝜑 → (𝐹 ∘f − 𝐺) ∈ MblFn) |