MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsub Structured version   Visualization version   GIF version

Theorem mbfsub 25590
Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfadd.1 (𝜑𝐹 ∈ MblFn)
mbfadd.2 (𝜑𝐺 ∈ MblFn)
Assertion
Ref Expression
mbfsub (𝜑 → (𝐹f𝐺) ∈ MblFn)

Proof of Theorem mbfsub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfadd.1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
2 mbff 25553 . . . . . . . 8 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
31, 2syl 17 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℂ)
4 elinel1 4148 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
5 ffvelcdm 7014 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
63, 4, 5syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
7 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
8 mbff 25553 . . . . . . . 8 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺⟶ℂ)
10 elinel2 4149 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
11 ffvelcdm 7014 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
129, 10, 11syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
136, 12negsubd 11478 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1413eqcomd 2737 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑥) + -(𝐺𝑥)))
1514mpteq2dva 5182 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + -(𝐺𝑥))))
163ffnd 6652 . . . 4 (𝜑𝐹 Fn dom 𝐹)
179ffnd 6652 . . . 4 (𝜑𝐺 Fn dom 𝐺)
18 mbfdm 25554 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
191, 18syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
20 mbfdm 25554 . . . . 5 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
217, 20syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ dom vol)
22 eqid 2731 . . . 4 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
23 eqidd 2732 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
24 eqidd 2732 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
2516, 17, 19, 21, 22, 23, 24offval 7619 . . 3 (𝜑 → (𝐹f𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) − (𝐺𝑥))))
26 inmbl 25470 . . . . 5 ((dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2719, 21, 26syl2anc 584 . . . 4 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2812negcld 11459 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → -(𝐺𝑥) ∈ ℂ)
29 eqidd 2732 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
30 eqidd 2732 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)))
3127, 6, 28, 29, 30offval2 7630 . . 3 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + -(𝐺𝑥))))
3215, 25, 313eqtr4d 2776 . 2 (𝜑 → (𝐹f𝐺) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))))
33 inss1 4184 . . . . 5 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
34 resmpt 5985 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
3533, 34mp1i 13 . . . 4 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
363feqmptd 6890 . . . . . 6 (𝜑𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
3736, 1eqeltrrd 2832 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn)
38 mbfres 25572 . . . . 5 (((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
3937, 27, 38syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4035, 39eqeltrrd 2832 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn)
41 inss2 4185 . . . . . 6 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
42 resmpt 5985 . . . . . 6 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
4341, 42mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
449feqmptd 6890 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
4544, 7eqeltrrd 2832 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn)
46 mbfres 25572 . . . . . 6 (((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4745, 27, 46syl2anc 584 . . . . 5 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4843, 47eqeltrrd 2832 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn)
4912, 48mbfneg 25578 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)) ∈ MblFn)
5040, 49mbfadd 25589 . 2 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))) ∈ MblFn)
5132, 50eqeltrd 2831 1 (𝜑 → (𝐹f𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897  cmpt 5170  dom cdm 5614  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  cc 11004   + caddc 11009  cmin 11344  -cneg 11345  volcvol 25391  MblFncmbf 25542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xadd 13012  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-xmet 21284  df-met 21285  df-ovol 25392  df-vol 25393  df-mbf 25547
This theorem is referenced by:  mbfmul  25654  iblulm  26343
  Copyright terms: Public domain W3C validator