MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsub Structured version   Visualization version   GIF version

Theorem mbfsub 25697
Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfadd.1 (𝜑𝐹 ∈ MblFn)
mbfadd.2 (𝜑𝐺 ∈ MblFn)
Assertion
Ref Expression
mbfsub (𝜑 → (𝐹f𝐺) ∈ MblFn)

Proof of Theorem mbfsub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfadd.1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
2 mbff 25660 . . . . . . . 8 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
31, 2syl 17 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℂ)
4 elinel1 4201 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
5 ffvelcdm 7101 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
63, 4, 5syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
7 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
8 mbff 25660 . . . . . . . 8 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺⟶ℂ)
10 elinel2 4202 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
11 ffvelcdm 7101 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
129, 10, 11syl2an 596 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
136, 12negsubd 11626 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1413eqcomd 2743 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑥) + -(𝐺𝑥)))
1514mpteq2dva 5242 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + -(𝐺𝑥))))
163ffnd 6737 . . . 4 (𝜑𝐹 Fn dom 𝐹)
179ffnd 6737 . . . 4 (𝜑𝐺 Fn dom 𝐺)
18 mbfdm 25661 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
191, 18syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
20 mbfdm 25661 . . . . 5 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
217, 20syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ dom vol)
22 eqid 2737 . . . 4 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
23 eqidd 2738 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
24 eqidd 2738 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
2516, 17, 19, 21, 22, 23, 24offval 7706 . . 3 (𝜑 → (𝐹f𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) − (𝐺𝑥))))
26 inmbl 25577 . . . . 5 ((dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2719, 21, 26syl2anc 584 . . . 4 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2812negcld 11607 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → -(𝐺𝑥) ∈ ℂ)
29 eqidd 2738 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
30 eqidd 2738 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)))
3127, 6, 28, 29, 30offval2 7717 . . 3 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + -(𝐺𝑥))))
3215, 25, 313eqtr4d 2787 . 2 (𝜑 → (𝐹f𝐺) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))))
33 inss1 4237 . . . . 5 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
34 resmpt 6055 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
3533, 34mp1i 13 . . . 4 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
363feqmptd 6977 . . . . . 6 (𝜑𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
3736, 1eqeltrrd 2842 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn)
38 mbfres 25679 . . . . 5 (((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
3937, 27, 38syl2anc 584 . . . 4 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4035, 39eqeltrrd 2842 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn)
41 inss2 4238 . . . . . 6 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
42 resmpt 6055 . . . . . 6 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
4341, 42mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
449feqmptd 6977 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
4544, 7eqeltrrd 2842 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn)
46 mbfres 25679 . . . . . 6 (((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4745, 27, 46syl2anc 584 . . . . 5 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4843, 47eqeltrrd 2842 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn)
4912, 48mbfneg 25685 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)) ∈ MblFn)
5040, 49mbfadd 25696 . 2 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))) ∈ MblFn)
5132, 50eqeltrd 2841 1 (𝜑 → (𝐹f𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3950  wss 3951  cmpt 5225  dom cdm 5685  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153   + caddc 11158  cmin 11492  -cneg 11493  volcvol 25498  MblFncmbf 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-mbf 25654
This theorem is referenced by:  mbfmul  25761  iblulm  26450
  Copyright terms: Public domain W3C validator