Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsub Structured version   Visualization version   GIF version

Theorem mbfsub 24273
 Description: The difference of two measurable functions is measurable. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
Assertion
Ref Expression
mbfsub (𝜑 → (𝐹f𝐺) ∈ MblFn)

Proof of Theorem mbfsub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfadd.1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
2 mbff 24236 . . . . . . . 8 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
31, 2syl 17 . . . . . . 7 (𝜑𝐹:dom 𝐹⟶ℂ)
4 elinel1 4122 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
5 ffvelrn 6826 . . . . . . 7 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
63, 4, 5syl2an 598 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
7 mbfadd.2 . . . . . . . 8 (𝜑𝐺 ∈ MblFn)
8 mbff 24236 . . . . . . . 8 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝐺:dom 𝐺⟶ℂ)
10 elinel2 4123 . . . . . . 7 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
11 ffvelrn 6826 . . . . . . 7 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
129, 10, 11syl2an 598 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
136, 12negsubd 10994 . . . . 5 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) + -(𝐺𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1413eqcomd 2804 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑥) + -(𝐺𝑥)))
1514mpteq2dva 5125 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) − (𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + -(𝐺𝑥))))
163ffnd 6488 . . . 4 (𝜑𝐹 Fn dom 𝐹)
179ffnd 6488 . . . 4 (𝜑𝐺 Fn dom 𝐺)
18 mbfdm 24237 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
191, 18syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
20 mbfdm 24237 . . . . 5 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
217, 20syl 17 . . . 4 (𝜑 → dom 𝐺 ∈ dom vol)
22 eqid 2798 . . . 4 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
23 eqidd 2799 . . . 4 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
24 eqidd 2799 . . . 4 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
2516, 17, 19, 21, 22, 23, 24offval 7397 . . 3 (𝜑 → (𝐹f𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) − (𝐺𝑥))))
26 inmbl 24153 . . . . 5 ((dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2719, 21, 26syl2anc 587 . . . 4 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2812negcld 10975 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → -(𝐺𝑥) ∈ ℂ)
29 eqidd 2799 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
30 eqidd 2799 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)))
3127, 6, 28, 29, 30offval2 7408 . . 3 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) + -(𝐺𝑥))))
3215, 25, 313eqtr4d 2843 . 2 (𝜑 → (𝐹f𝐺) = ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))))
33 inss1 4155 . . . . 5 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
34 resmpt 5872 . . . . 5 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
3533, 34mp1i 13 . . . 4 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
363feqmptd 6708 . . . . . 6 (𝜑𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
3736, 1eqeltrrd 2891 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn)
38 mbfres 24255 . . . . 5 (((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
3937, 27, 38syl2anc 587 . . . 4 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4035, 39eqeltrrd 2891 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn)
41 inss2 4156 . . . . . 6 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
42 resmpt 5872 . . . . . 6 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
4341, 42mp1i 13 . . . . 5 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
449feqmptd 6708 . . . . . . 7 (𝜑𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
4544, 7eqeltrrd 2891 . . . . . 6 (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn)
46 mbfres 24255 . . . . . 6 (((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4745, 27, 46syl2anc 587 . . . . 5 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4843, 47eqeltrrd 2891 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn)
4912, 48mbfneg 24261 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥)) ∈ MblFn)
5040, 49mbfadd 24272 . 2 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∘f + (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ -(𝐺𝑥))) ∈ MblFn)
5132, 50eqeltrd 2890 1 (𝜑 → (𝐹f𝐺) ∈ MblFn)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ∩ cin 3880   ⊆ wss 3881   ↦ cmpt 5110  dom cdm 5519   ↾ cres 5521  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ∘f cof 7388  ℂcc 10526   + caddc 10531   − cmin 10861  -cneg 10862  volcvol 24074  MblFncmbf 24225 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-inf2 9090  ax-cc 9848  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7390  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-2o 8088  df-oadd 8091  df-omul 8092  df-er 8274  df-map 8393  df-pm 8394  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-oi 8960  df-dju 9316  df-card 9354  df-acn 9357  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-n0 11888  df-z 11972  df-uz 12234  df-q 12339  df-rp 12380  df-xadd 12498  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12888  df-fzo 13031  df-fl 13159  df-seq 13367  df-exp 13428  df-hash 13689  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-xmet 20087  df-met 20088  df-ovol 24075  df-vol 24076  df-mbf 24230 This theorem is referenced by:  mbfmul  24337  iblulm  25009
 Copyright terms: Public domain W3C validator