MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmul Structured version   Visualization version   GIF version

Theorem mbfmul 25243
Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (πœ‘ β†’ 𝐹 ∈ MblFn)
mbfmul.2 (πœ‘ β†’ 𝐺 ∈ MblFn)
Assertion
Ref Expression
mbfmul (πœ‘ β†’ (𝐹 ∘f Β· 𝐺) ∈ MblFn)

Proof of Theorem mbfmul
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . . . 5 (πœ‘ β†’ 𝐹 ∈ MblFn)
2 mbff 25141 . . . . 5 (𝐹 ∈ MblFn β†’ 𝐹:dom πΉβŸΆβ„‚)
31, 2syl 17 . . . 4 (πœ‘ β†’ 𝐹:dom πΉβŸΆβ„‚)
43ffnd 6718 . . 3 (πœ‘ β†’ 𝐹 Fn dom 𝐹)
5 mbfmul.2 . . . . 5 (πœ‘ β†’ 𝐺 ∈ MblFn)
6 mbff 25141 . . . . 5 (𝐺 ∈ MblFn β†’ 𝐺:dom πΊβŸΆβ„‚)
75, 6syl 17 . . . 4 (πœ‘ β†’ 𝐺:dom πΊβŸΆβ„‚)
87ffnd 6718 . . 3 (πœ‘ β†’ 𝐺 Fn dom 𝐺)
9 mbfdm 25142 . . . 4 (𝐹 ∈ MblFn β†’ dom 𝐹 ∈ dom vol)
101, 9syl 17 . . 3 (πœ‘ β†’ dom 𝐹 ∈ dom vol)
11 mbfdm 25142 . . . 4 (𝐺 ∈ MblFn β†’ dom 𝐺 ∈ dom vol)
125, 11syl 17 . . 3 (πœ‘ β†’ dom 𝐺 ∈ dom vol)
13 eqid 2732 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2733 . . 3 ((πœ‘ ∧ π‘₯ ∈ dom 𝐹) β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘₯))
15 eqidd 2733 . . 3 ((πœ‘ ∧ π‘₯ ∈ dom 𝐺) β†’ (πΊβ€˜π‘₯) = (πΊβ€˜π‘₯))
164, 8, 10, 12, 13, 14, 15offval 7678 . 2 (πœ‘ β†’ (𝐹 ∘f Β· 𝐺) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯))))
17 elinel1 4195 . . . . . . . 8 (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) β†’ π‘₯ ∈ dom 𝐹)
18 ffvelcdm 7083 . . . . . . . 8 ((𝐹:dom πΉβŸΆβ„‚ ∧ π‘₯ ∈ dom 𝐹) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
193, 17, 18syl2an 596 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
20 elinel2 4196 . . . . . . . 8 (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) β†’ π‘₯ ∈ dom 𝐺)
21 ffvelcdm 7083 . . . . . . . 8 ((𝐺:dom πΊβŸΆβ„‚ ∧ π‘₯ ∈ dom 𝐺) β†’ (πΊβ€˜π‘₯) ∈ β„‚)
227, 20, 21syl2an 596 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (πΊβ€˜π‘₯) ∈ β„‚)
2319, 22remuld 15164 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (β„œβ€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯))) = (((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯))) βˆ’ ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯)))))
2423mpteq2dva 5248 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯))) βˆ’ ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯))))))
25 inmbl 25058 . . . . . . 7 ((dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol) β†’ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2610, 12, 25syl2anc 584 . . . . . 6 (πœ‘ β†’ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
27 ovexd 7443 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ ((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯))) ∈ V)
28 ovexd 7443 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯))) ∈ V)
2919recld 15140 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (β„œβ€˜(πΉβ€˜π‘₯)) ∈ ℝ)
3022recld 15140 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (β„œβ€˜(πΊβ€˜π‘₯)) ∈ ℝ)
31 eqidd 2733 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))))
32 eqidd 2733 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))))
3326, 29, 30, 31, 32offval2 7689 . . . . . 6 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯)))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯)))))
3419imcld 15141 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (β„‘β€˜(πΉβ€˜π‘₯)) ∈ ℝ)
3522imcld 15141 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (β„‘β€˜(πΊβ€˜π‘₯)) ∈ ℝ)
36 eqidd 2733 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))))
37 eqidd 2733 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))))
3826, 34, 35, 36, 37offval2 7689 . . . . . 6 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯)))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯)))))
3926, 27, 28, 33, 38offval2 7689 . . . . 5 (πœ‘ β†’ (((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯)))) ∘f βˆ’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯))) βˆ’ ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯))))))
4024, 39eqtr4d 2775 . . . 4 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) = (((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯)))) ∘f βˆ’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))))))
41 inss1 4228 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) βŠ† dom 𝐹
42 resmpt 6037 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) βŠ† dom 𝐹 β†’ ((π‘₯ ∈ dom 𝐹 ↦ (πΉβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΉβ€˜π‘₯)))
4341, 42ax-mp 5 . . . . . . . . 9 ((π‘₯ ∈ dom 𝐹 ↦ (πΉβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΉβ€˜π‘₯))
443feqmptd 6960 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ dom 𝐹 ↦ (πΉβ€˜π‘₯)))
4544, 1eqeltrrd 2834 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ dom 𝐹 ↦ (πΉβ€˜π‘₯)) ∈ MblFn)
46 mbfres 25160 . . . . . . . . . 10 (((π‘₯ ∈ dom 𝐹 ↦ (πΉβ€˜π‘₯)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) β†’ ((π‘₯ ∈ dom 𝐹 ↦ (πΉβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4745, 26, 46syl2anc 584 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ ∈ dom 𝐹 ↦ (πΉβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4843, 47eqeltrrid 2838 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΉβ€˜π‘₯)) ∈ MblFn)
4919ismbfcn2 25154 . . . . . . . 8 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΉβ€˜π‘₯)) ∈ MblFn ↔ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∈ MblFn ∧ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∈ MblFn)))
5048, 49mpbid 231 . . . . . . 7 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∈ MblFn ∧ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∈ MblFn))
5150simpld 495 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∈ MblFn)
52 inss2 4229 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) βŠ† dom 𝐺
53 resmpt 6037 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) βŠ† dom 𝐺 β†’ ((π‘₯ ∈ dom 𝐺 ↦ (πΊβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΊβ€˜π‘₯)))
5452, 53ax-mp 5 . . . . . . . . 9 ((π‘₯ ∈ dom 𝐺 ↦ (πΊβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΊβ€˜π‘₯))
557feqmptd 6960 . . . . . . . . . . 11 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ dom 𝐺 ↦ (πΊβ€˜π‘₯)))
5655, 5eqeltrrd 2834 . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ dom 𝐺 ↦ (πΊβ€˜π‘₯)) ∈ MblFn)
57 mbfres 25160 . . . . . . . . . 10 (((π‘₯ ∈ dom 𝐺 ↦ (πΊβ€˜π‘₯)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) β†’ ((π‘₯ ∈ dom 𝐺 ↦ (πΊβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5856, 26, 57syl2anc 584 . . . . . . . . 9 (πœ‘ β†’ ((π‘₯ ∈ dom 𝐺 ↦ (πΊβ€˜π‘₯)) β†Ύ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5954, 58eqeltrrid 2838 . . . . . . . 8 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΊβ€˜π‘₯)) ∈ MblFn)
6022ismbfcn2 25154 . . . . . . . 8 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (πΊβ€˜π‘₯)) ∈ MblFn ↔ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))) ∈ MblFn ∧ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))) ∈ MblFn)))
6159, 60mpbid 231 . . . . . . 7 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))) ∈ MblFn ∧ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))) ∈ MblFn))
6261simpld 495 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))) ∈ MblFn)
6329fmpttd 7114 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))):(dom 𝐹 ∩ dom 𝐺)βŸΆβ„)
6430fmpttd 7114 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))):(dom 𝐹 ∩ dom 𝐺)βŸΆβ„)
6551, 62, 63, 64mbfmullem 25242 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯)))) ∈ MblFn)
6650simprd 496 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∈ MblFn)
6761simprd 496 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))) ∈ MblFn)
6834fmpttd 7114 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))):(dom 𝐹 ∩ dom 𝐺)βŸΆβ„)
6935fmpttd 7114 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))):(dom 𝐹 ∩ dom 𝐺)βŸΆβ„)
7066, 67, 68, 69mbfmullem 25242 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯)))) ∈ MblFn)
7165, 70mbfsub 25178 . . . 4 (πœ‘ β†’ (((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯)))) ∘f βˆ’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯))))) ∈ MblFn)
7240, 71eqeltrd 2833 . . 3 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) ∈ MblFn)
7319, 22immuld 15165 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ (β„‘β€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯))) = (((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯))) + ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯)))))
7473mpteq2dva 5248 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯))) + ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯))))))
75 ovexd 7443 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ ((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯))) ∈ V)
76 ovexd 7443 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯))) ∈ V)
7726, 29, 35, 31, 37offval2 7689 . . . . . 6 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯)))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯)))))
7826, 34, 30, 36, 32offval2 7689 . . . . . 6 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯)))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯)))))
7926, 75, 76, 77, 78offval2 7689 . . . . 5 (πœ‘ β†’ (((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯)))) ∘f + ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))))) = (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((β„œβ€˜(πΉβ€˜π‘₯)) Β· (β„‘β€˜(πΊβ€˜π‘₯))) + ((β„‘β€˜(πΉβ€˜π‘₯)) Β· (β„œβ€˜(πΊβ€˜π‘₯))))))
8074, 79eqtr4d 2775 . . . 4 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) = (((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯)))) ∘f + ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))))))
8151, 67, 63, 69mbfmullem 25242 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯)))) ∈ MblFn)
8266, 62, 68, 64mbfmullem 25242 . . . . 5 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯)))) ∈ MblFn)
8381, 82mbfadd 25177 . . . 4 (πœ‘ β†’ (((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΊβ€˜π‘₯)))) ∘f + ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜(πΉβ€˜π‘₯))) ∘f Β· (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜(πΊβ€˜π‘₯))))) ∈ MblFn)
8480, 83eqeltrd 2833 . . 3 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) ∈ MblFn)
8519, 22mulcld 11233 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺)) β†’ ((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)) ∈ β„‚)
8685ismbfcn2 25154 . . 3 (πœ‘ β†’ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯))) ∈ MblFn ↔ ((π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„œβ€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) ∈ MblFn ∧ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (β„‘β€˜((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯)))) ∈ MblFn)))
8772, 84, 86mpbir2and 711 . 2 (πœ‘ β†’ (π‘₯ ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((πΉβ€˜π‘₯) Β· (πΊβ€˜π‘₯))) ∈ MblFn)
8816, 87eqeltrd 2833 1 (πœ‘ β†’ (𝐹 ∘f Β· 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948   ↦ cmpt 5231  dom cdm 5676   β†Ύ cres 5678  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ∘f cof 7667  β„‚cc 11107  β„cr 11108   + caddc 11112   Β· cmul 11114   βˆ’ cmin 11443  β„œcre 15043  β„‘cim 15044  volcvol 24979  MblFncmbf 25130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cc 10429  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-omul 8470  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-acn 9936  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ioc 13328  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15632  df-rest 17367  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-cmp 22890  df-ovol 24980  df-vol 24981  df-mbf 25135  df-itg1 25136  df-0p 25186
This theorem is referenced by:  bddmulibl  25355
  Copyright terms: Public domain W3C validator