Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmul Structured version   Visualization version   GIF version

Theorem mbfmul 24328
 Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
Assertion
Ref Expression
mbfmul (𝜑 → (𝐹f · 𝐺) ∈ MblFn)

Proof of Theorem mbfmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
2 mbff 24227 . . . . 5 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
31, 2syl 17 . . . 4 (𝜑𝐹:dom 𝐹⟶ℂ)
43ffnd 6495 . . 3 (𝜑𝐹 Fn dom 𝐹)
5 mbfmul.2 . . . . 5 (𝜑𝐺 ∈ MblFn)
6 mbff 24227 . . . . 5 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
75, 6syl 17 . . . 4 (𝜑𝐺:dom 𝐺⟶ℂ)
87ffnd 6495 . . 3 (𝜑𝐺 Fn dom 𝐺)
9 mbfdm 24228 . . . 4 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
101, 9syl 17 . . 3 (𝜑 → dom 𝐹 ∈ dom vol)
11 mbfdm 24228 . . . 4 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
125, 11syl 17 . . 3 (𝜑 → dom 𝐺 ∈ dom vol)
13 eqid 2822 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2823 . . 3 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
15 eqidd 2823 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
164, 8, 10, 12, 13, 14, 15offval 7401 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
17 elinel1 4146 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
18 ffvelrn 6831 . . . . . . . 8 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
193, 17, 18syl2an 598 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
20 elinel2 4147 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
21 ffvelrn 6831 . . . . . . . 8 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
227, 20, 21syl2an 598 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
2319, 22remuld 14568 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘((𝐹𝑥) · (𝐺𝑥))) = (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
2423mpteq2dva 5137 . . . . 5 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))))))
25 inmbl 24144 . . . . . . 7 ((dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2610, 12, 25syl2anc 587 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
27 ovexd 7175 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V)
28 ovexd 7175 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V)
2919recld 14544 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
3022recld 14544 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐺𝑥)) ∈ ℝ)
31 eqidd 2823 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))))
32 eqidd 2823 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))
3326, 29, 30, 31, 32offval2 7411 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
3419imcld 14545 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
3522imcld 14545 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐺𝑥)) ∈ ℝ)
36 eqidd 2823 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))))
37 eqidd 2823 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))
3826, 34, 35, 36, 37offval2 7411 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
3926, 27, 28, 33, 38offval2 7411 . . . . 5 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))))))
4024, 39eqtr4d 2860 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))))
41 inss1 4179 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
42 resmpt 5883 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
4341, 42ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥))
443feqmptd 6715 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
4544, 1eqeltrrd 2915 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn)
46 mbfres 24246 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4745, 26, 46syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4843, 47eqeltrrid 2919 . . . . . . . 8 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn)
4919ismbfcn2 24240 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)))
5048, 49mpbid 235 . . . . . . 7 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn))
5150simpld 498 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
52 inss2 4180 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
53 resmpt 5883 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
5452, 53ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥))
557feqmptd 6715 . . . . . . . . . . 11 (𝜑𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
5655, 5eqeltrrd 2915 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn)
57 mbfres 24246 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5856, 26, 57syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5954, 58eqeltrrid 2919 . . . . . . . 8 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn)
6022ismbfcn2 24240 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn)))
6159, 60mpbid 235 . . . . . . 7 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn))
6261simpld 498 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn)
6329fmpttd 6861 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
6430fmpttd 6861 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
6551, 62, 63, 64mbfmullem 24327 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∈ MblFn)
6650simprd 499 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)
6761simprd 499 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn)
6834fmpttd 6861 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
6935fmpttd 6861 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
7066, 67, 68, 69mbfmullem 24327 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∈ MblFn)
7165, 70mbfsub 24264 . . . 4 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))) ∈ MblFn)
7240, 71eqeltrd 2914 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)
7319, 22immuld 14569 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘((𝐹𝑥) · (𝐺𝑥))) = (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
7473mpteq2dva 5137 . . . . 5 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))))))
75 ovexd 7175 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V)
76 ovexd 7175 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V)
7726, 29, 35, 31, 37offval2 7411 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
7826, 34, 30, 36, 32offval2 7411 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
7926, 75, 76, 77, 78offval2 7411 . . . . 5 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))))))
8074, 79eqtr4d 2860 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))))
8151, 67, 63, 69mbfmullem 24327 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∈ MblFn)
8266, 62, 68, 64mbfmullem 24327 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∈ MblFn)
8381, 82mbfadd 24263 . . . 4 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))) ∈ MblFn)
8480, 83eqeltrd 2914 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)
8519, 22mulcld 10650 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
8685ismbfcn2 24240 . . 3 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)))
8772, 84, 86mpbir2and 712 . 2 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn)
8816, 87eqeltrd 2914 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114  Vcvv 3469   ∩ cin 3907   ⊆ wss 3908   ↦ cmpt 5122  dom cdm 5532   ↾ cres 5534  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘f cof 7392  ℂcc 10524  ℝcr 10525   + caddc 10529   · cmul 10531   − cmin 10859  ℜcre 14447  ℑcim 14448  volcvol 24065  MblFncmbf 24216 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-disj 5008  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-rest 16687  df-topgen 16708  df-psmet 20081  df-xmet 20082  df-met 20083  df-bl 20084  df-mopn 20085  df-top 21497  df-topon 21514  df-bases 21549  df-cmp 21990  df-ovol 24066  df-vol 24067  df-mbf 24221  df-itg1 24222  df-0p 24272 This theorem is referenced by:  bddmulibl  24440
 Copyright terms: Public domain W3C validator