Step | Hyp | Ref
| Expression |
1 | | mbfmul.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ MblFn) |
2 | | mbff 24789 |
. . . . 5
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
4 | 3 | ffnd 6601 |
. . 3
⊢ (𝜑 → 𝐹 Fn dom 𝐹) |
5 | | mbfmul.2 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ MblFn) |
6 | | mbff 24789 |
. . . . 5
⊢ (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺:dom 𝐺⟶ℂ) |
8 | 7 | ffnd 6601 |
. . 3
⊢ (𝜑 → 𝐺 Fn dom 𝐺) |
9 | | mbfdm 24790 |
. . . 4
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
10 | 1, 9 | syl 17 |
. . 3
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
11 | | mbfdm 24790 |
. . . 4
⊢ (𝐺 ∈ MblFn → dom 𝐺 ∈ dom
vol) |
12 | 5, 11 | syl 17 |
. . 3
⊢ (𝜑 → dom 𝐺 ∈ dom vol) |
13 | | eqid 2738 |
. . 3
⊢ (dom
𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺) |
14 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
15 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
16 | 4, 8, 10, 12, 13, 14, 15 | offval 7542 |
. 2
⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
17 | | elinel1 4129 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹) |
18 | | ffvelrn 6959 |
. . . . . . . 8
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ℂ) |
19 | 3, 17, 18 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹‘𝑥) ∈ ℂ) |
20 | | elinel2 4130 |
. . . . . . . 8
⊢ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺) |
21 | | ffvelrn 6959 |
. . . . . . . 8
⊢ ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) ∈ ℂ) |
22 | 7, 20, 21 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺‘𝑥) ∈ ℂ) |
23 | 19, 22 | remuld 14929 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥))) = (((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) − ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))))) |
24 | 23 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) − ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥)))))) |
25 | | inmbl 24706 |
. . . . . . 7
⊢ ((dom
𝐹 ∈ dom vol ∧ dom
𝐺 ∈ dom vol) →
(dom 𝐹 ∩ dom 𝐺) ∈ dom
vol) |
26 | 10, 12, 25 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) |
27 | | ovexd 7310 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) ∈ V) |
28 | | ovexd 7310 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) ∈ V) |
29 | 19 | recld 14905 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐹‘𝑥)) ∈ ℝ) |
30 | 22 | recld 14905 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐺‘𝑥)) ∈ ℝ) |
31 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥)))) |
32 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) |
33 | 26, 29, 30, 31, 32 | offval2 7553 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))))) |
34 | 19 | imcld 14906 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐹‘𝑥)) ∈ ℝ) |
35 | 22 | imcld 14906 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐺‘𝑥)) ∈ ℝ) |
36 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥)))) |
37 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) |
38 | 26, 34, 35, 36, 37 | offval2 7553 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))))) |
39 | 26, 27, 28, 33, 38 | offval2 7553 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) − ((ℑ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥)))))) |
40 | 24, 39 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))))) |
41 | | inss1 4162 |
. . . . . . . . . 10
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 |
42 | | resmpt 5945 |
. . . . . . . . . 10
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥))) |
43 | 41, 42 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) |
44 | 3 | feqmptd 6837 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥))) |
45 | 44, 1 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn) |
46 | | mbfres 24808 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
47 | 45, 26, 46 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
48 | 43, 47 | eqeltrrid 2844 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∈ MblFn) |
49 | 19 | ismbfcn2 24802 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹‘𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn))) |
50 | 48, 49 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn)) |
51 | 50 | simpld 495 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∈ MblFn) |
52 | | inss2 4163 |
. . . . . . . . . 10
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 |
53 | | resmpt 5945 |
. . . . . . . . . 10
⊢ ((dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥))) |
54 | 52, 53 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) |
55 | 7 | feqmptd 6837 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥))) |
56 | 55, 5 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn) |
57 | | mbfres 24808 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
58 | 56, 26, 57 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺‘𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn) |
59 | 54, 58 | eqeltrrid 2844 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) ∈ MblFn) |
60 | 22 | ismbfcn2 24802 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) ∈ MblFn))) |
61 | 59, 60 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) ∈ MblFn)) |
62 | 61 | simpld 495 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))) ∈ MblFn) |
63 | 29 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
64 | 30 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
65 | 51, 62, 63, 64 | mbfmullem 24890 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∈ MblFn) |
66 | 50 | simprd 496 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∈ MblFn) |
67 | 61 | simprd 496 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))) ∈ MblFn) |
68 | 34 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
69 | 35 | fmpttd 6989 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ) |
70 | 66, 67, 68, 69 | mbfmullem 24890 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∈ MblFn) |
71 | 65, 70 | mbfsub 24826 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥))))) ∈ MblFn) |
72 | 40, 71 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn) |
73 | 19, 22 | immuld 14930 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥))) = (((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) + ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))))) |
74 | 73 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) + ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥)))))) |
75 | | ovexd 7310 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) ∈ V) |
76 | | ovexd 7310 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))) ∈ V) |
77 | 26, 29, 35, 31, 37 | offval2 7553 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))))) |
78 | 26, 34, 30, 36, 32 | offval2 7553 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥))))) |
79 | 26, 75, 76, 77, 78 | offval2 7553 |
. . . . 5
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹‘𝑥)) · (ℑ‘(𝐺‘𝑥))) + ((ℑ‘(𝐹‘𝑥)) · (ℜ‘(𝐺‘𝑥)))))) |
80 | 74, 79 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))))) |
81 | 51, 67, 63, 69 | mbfmullem 24890 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∈ MblFn) |
82 | 66, 62, 68, 64 | mbfmullem 24890 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥)))) ∈ MblFn) |
83 | 81, 82 | mbfadd 24825 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺‘𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹‘𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺‘𝑥))))) ∈ MblFn) |
84 | 80, 83 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn) |
85 | 19, 22 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
86 | 85 | ismbfcn2 24802 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹‘𝑥) · (𝐺‘𝑥)))) ∈ MblFn))) |
87 | 72, 84, 86 | mpbir2and 710 |
. 2
⊢ (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) ∈ MblFn) |
88 | 16, 87 | eqeltrd 2839 |
1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) |