MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmul Structured version   Visualization version   GIF version

Theorem mbfmul 25643
Description: The product of two measurable functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
Assertion
Ref Expression
mbfmul (𝜑 → (𝐹f · 𝐺) ∈ MblFn)

Proof of Theorem mbfmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfmul.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
2 mbff 25542 . . . . 5 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
31, 2syl 17 . . . 4 (𝜑𝐹:dom 𝐹⟶ℂ)
43ffnd 6657 . . 3 (𝜑𝐹 Fn dom 𝐹)
5 mbfmul.2 . . . . 5 (𝜑𝐺 ∈ MblFn)
6 mbff 25542 . . . . 5 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
75, 6syl 17 . . . 4 (𝜑𝐺:dom 𝐺⟶ℂ)
87ffnd 6657 . . 3 (𝜑𝐺 Fn dom 𝐺)
9 mbfdm 25543 . . . 4 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
101, 9syl 17 . . 3 (𝜑 → dom 𝐹 ∈ dom vol)
11 mbfdm 25543 . . . 4 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
125, 11syl 17 . . 3 (𝜑 → dom 𝐺 ∈ dom vol)
13 eqid 2729 . . 3 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2730 . . 3 ((𝜑𝑥 ∈ dom 𝐹) → (𝐹𝑥) = (𝐹𝑥))
15 eqidd 2730 . . 3 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) = (𝐺𝑥))
164, 8, 10, 12, 13, 14, 15offval 7626 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))))
17 elinel1 4154 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐹)
18 ffvelcdm 7019 . . . . . . . 8 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ℂ)
193, 17, 18syl2an 596 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑥) ∈ ℂ)
20 elinel2 4155 . . . . . . . 8 (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑥 ∈ dom 𝐺)
21 ffvelcdm 7019 . . . . . . . 8 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℂ)
227, 20, 21syl2an 596 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑥) ∈ ℂ)
2319, 22remuld 15143 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘((𝐹𝑥) · (𝐺𝑥))) = (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
2423mpteq2dva 5188 . . . . 5 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))))))
25 inmbl 25459 . . . . . . 7 ((dom 𝐹 ∈ dom vol ∧ dom 𝐺 ∈ dom vol) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
2610, 12, 25syl2anc 584 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
27 ovexd 7388 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V)
28 ovexd 7388 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V)
2919recld 15119 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐹𝑥)) ∈ ℝ)
3022recld 15119 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℜ‘(𝐺𝑥)) ∈ ℝ)
31 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))))
32 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))
3326, 29, 30, 31, 32offval2 7637 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
3419imcld 15120 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐹𝑥)) ∈ ℝ)
3522imcld 15120 . . . . . . 7 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘(𝐺𝑥)) ∈ ℝ)
36 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))))
37 eqidd 2730 . . . . . . 7 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))
3826, 34, 35, 36, 37offval2 7637 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
3926, 27, 28, 33, 38offval2 7637 . . . . 5 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) − ((ℑ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))))))
4024, 39eqtr4d 2767 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))))
41 inss1 4190 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹
42 resmpt 5992 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)))
4341, 42ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥))
443feqmptd 6895 . . . . . . . . . . 11 (𝜑𝐹 = (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)))
4544, 1eqeltrrd 2829 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn)
46 mbfres 25561 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4745, 26, 46syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom 𝐹 ↦ (𝐹𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
4843, 47eqeltrrid 2833 . . . . . . . 8 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn)
4919ismbfcn2 25555 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐹𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)))
5048, 49mpbid 232 . . . . . . 7 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn))
5150simpld 494 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∈ MblFn)
52 inss2 4191 . . . . . . . . . 10 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
53 resmpt 5992 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)))
5452, 53ax-mp 5 . . . . . . . . 9 ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥))
557feqmptd 6895 . . . . . . . . . . 11 (𝜑𝐺 = (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)))
5655, 5eqeltrrd 2829 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn)
57 mbfres 25561 . . . . . . . . . 10 (((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ∈ MblFn ∧ (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5856, 26, 57syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ dom 𝐺 ↦ (𝐺𝑥)) ↾ (dom 𝐹 ∩ dom 𝐺)) ∈ MblFn)
5954, 58eqeltrrid 2833 . . . . . . . 8 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn)
6022ismbfcn2 25555 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑥)) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn)))
6159, 60mpbid 232 . . . . . . 7 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn))
6261simpld 494 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))) ∈ MblFn)
6329fmpttd 7053 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
6430fmpttd 7053 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
6551, 62, 63, 64mbfmullem 25642 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∈ MblFn)
6650simprd 495 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∈ MblFn)
6761simprd 495 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))) ∈ MblFn)
6834fmpttd 7053 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
6935fmpttd 7053 . . . . . 6 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))):(dom 𝐹 ∩ dom 𝐺)⟶ℝ)
7066, 67, 68, 69mbfmullem 25642 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∈ MblFn)
7165, 70mbfsub 25579 . . . 4 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∘f − ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥))))) ∈ MblFn)
7240, 71eqeltrd 2828 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)
7319, 22immuld 15144 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → (ℑ‘((𝐹𝑥) · (𝐺𝑥))) = (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
7473mpteq2dva 5188 . . . . 5 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))))))
75 ovexd 7388 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) ∈ V)
76 ovexd 7388 . . . . . 6 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))) ∈ V)
7726, 29, 35, 31, 37offval2 7637 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥)))))
7826, 34, 30, 36, 32offval2 7637 . . . . . 6 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥)))))
7926, 75, 76, 77, 78offval2 7637 . . . . 5 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (((ℜ‘(𝐹𝑥)) · (ℑ‘(𝐺𝑥))) + ((ℑ‘(𝐹𝑥)) · (ℜ‘(𝐺𝑥))))))
8074, 79eqtr4d 2767 . . . 4 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) = (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))))
8151, 67, 63, 69mbfmullem 25642 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∈ MblFn)
8266, 62, 68, 64mbfmullem 25642 . . . . 5 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥)))) ∈ MblFn)
8381, 82mbfadd 25578 . . . 4 (𝜑 → (((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐺𝑥)))) ∘f + ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘(𝐹𝑥))) ∘f · (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘(𝐺𝑥))))) ∈ MblFn)
8480, 83eqeltrd 2828 . . 3 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)
8519, 22mulcld 11154 . . . 4 ((𝜑𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
8685ismbfcn2 25555 . . 3 (𝜑 → ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn ↔ ((𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℜ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (ℑ‘((𝐹𝑥) · (𝐺𝑥)))) ∈ MblFn)))
8772, 84, 86mpbir2and 713 . 2 (𝜑 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn)
8816, 87eqeltrd 2828 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  cmpt 5176  dom cdm 5623  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  cr 11027   + caddc 11031   · cmul 11033  cmin 11365  cre 15022  cim 15023  volcvol 25380  MblFncmbf 25531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cmp 23290  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-0p 25587
This theorem is referenced by:  bddmulibl  25756
  Copyright terms: Public domain W3C validator