MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddibl Structured version   Visualization version   GIF version

Theorem bddibl 25357
Description: A bounded function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddibl ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ 𝐹 ∈ 𝐿1)
Distinct variable group:   π‘₯,𝑦,𝐹

Proof of Theorem bddibl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbfdm 25143 . . . 4 (𝐹 ∈ MblFn β†’ dom 𝐹 ∈ dom vol)
213ad2ant1 1134 . . 3 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ dom 𝐹 ∈ dom vol)
3 mbff 25142 . . . . 5 (𝐹 ∈ MblFn β†’ 𝐹:dom πΉβŸΆβ„‚)
433ad2ant1 1134 . . . 4 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ 𝐹:dom πΉβŸΆβ„‚)
54ffnd 6719 . . 3 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ 𝐹 Fn dom 𝐹)
6 1cnd 11209 . . . 4 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ 1 ∈ β„‚)
7 fnconstg 6780 . . . 4 (1 ∈ β„‚ β†’ (dom 𝐹 Γ— {1}) Fn dom 𝐹)
86, 7syl 17 . . 3 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ (dom 𝐹 Γ— {1}) Fn dom 𝐹)
9 eqidd 2734 . . 3 (((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) ∧ 𝑧 ∈ dom 𝐹) β†’ (πΉβ€˜π‘§) = (πΉβ€˜π‘§))
10 1ex 11210 . . . . 5 1 ∈ V
1110fvconst2 7205 . . . 4 (𝑧 ∈ dom 𝐹 β†’ ((dom 𝐹 Γ— {1})β€˜π‘§) = 1)
1211adantl 483 . . 3 (((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) ∧ 𝑧 ∈ dom 𝐹) β†’ ((dom 𝐹 Γ— {1})β€˜π‘§) = 1)
134ffvelcdmda 7087 . . . 4 (((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) ∧ 𝑧 ∈ dom 𝐹) β†’ (πΉβ€˜π‘§) ∈ β„‚)
1413mulridd 11231 . . 3 (((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) ∧ 𝑧 ∈ dom 𝐹) β†’ ((πΉβ€˜π‘§) Β· 1) = (πΉβ€˜π‘§))
152, 5, 8, 5, 9, 12, 14offveq 7694 . 2 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ (𝐹 ∘f Β· (dom 𝐹 Γ— {1})) = 𝐹)
16 simp2 1138 . . . 4 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ (volβ€˜dom 𝐹) ∈ ℝ)
17 iblconst 25335 . . . 4 ((dom 𝐹 ∈ dom vol ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ 1 ∈ β„‚) β†’ (dom 𝐹 Γ— {1}) ∈ 𝐿1)
182, 16, 6, 17syl3anc 1372 . . 3 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ (dom 𝐹 Γ— {1}) ∈ 𝐿1)
19 bddmulibl 25356 . . 3 ((𝐹 ∈ MblFn ∧ (dom 𝐹 Γ— {1}) ∈ 𝐿1 ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ (𝐹 ∘f Β· (dom 𝐹 Γ— {1})) ∈ 𝐿1)
2018, 19syld3an2 1412 . 2 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ (𝐹 ∘f Β· (dom 𝐹 Γ— {1})) ∈ 𝐿1)
2115, 20eqeltrrd 2835 1 ((𝐹 ∈ MblFn ∧ (volβ€˜dom 𝐹) ∈ ℝ ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯) β†’ 𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {csn 4629   class class class wbr 5149   Γ— cxp 5675  dom cdm 5677   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∘f cof 7668  β„‚cc 11108  β„cr 11109  1c1 11111   Β· cmul 11115   ≀ cle 11249  abscabs 15181  volcvol 24980  MblFncmbf 25131  πΏ1cibl 25134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cc 10430  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-ofr 7671  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cn 22731  df-cnp 22732  df-cmp 22891  df-tx 23066  df-hmeo 23259  df-xms 23826  df-ms 23827  df-tms 23828  df-cncf 24394  df-ovol 24981  df-vol 24982  df-mbf 25136  df-itg1 25137  df-itg2 25138  df-ibl 25139  df-0p 25187
This theorem is referenced by:  cniccibl  25358  iblulm  25919  ftc2re  33610  cnioobibld  41963  cnbdibl  44678
  Copyright terms: Public domain W3C validator