MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmptcl Structured version   Visualization version   GIF version

Theorem mbfmptcl 24244
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfmptcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmptcl
StepHypRef Expression
1 mbfmptcl.1 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbff 24233 . . . 4 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 mbfmptcl.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6067 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6477 . . 3 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 235 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
109fvmptelrn 6858 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wral 3109  cmpt 5113  dom cdm 5523  wf 6324  cc 10528  MblFncmbf 24222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-pm 8396  df-mbf 24227
This theorem is referenced by:  mbfss  24254  mbfneg  24258  mbfmulc2  24271  mbflim  24276  itgcnlem  24397  itgcnval  24407  itgre  24408  itgim  24409  iblneg  24410  itgneg  24411  iblss  24412  iblss2  24413  ibladd  24428  iblsub  24429  itgadd  24432  itgsub  24433  itgfsum  24434  iblabs  24436  iblabsr  24437  iblmulc2  24438  itgmulc2  24441  itgabs  24442  itgsplit  24443  bddmulibl  24446  itgcn  24452  ditgswap  24466  ditgsplitlem  24467  ftc1a  24644  ibladdnc  35113  itgaddnc  35116  iblsubnc  35117  itgsubnc  35118  iblabsnc  35120  iblmulc2nc  35121  itgmulc2nc  35124  itgabsnc  35125
  Copyright terms: Public domain W3C validator