![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfmptcl | Structured version Visualization version GIF version |
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.) |
Ref | Expression |
---|---|
mbfmptcl.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
mbfmptcl.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
mbfmptcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmptcl.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
2 | mbff 25679 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ) |
4 | mbfmptcl.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
5 | 4 | ralrimiva 3152 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
6 | dmmptg 6273 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
8 | 7 | feq2d 6733 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵):dom (𝑥 ∈ 𝐴 ↦ 𝐵)⟶ℂ ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ)) |
9 | 3, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
10 | 9 | fvmptelcdm 7147 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 dom cdm 5700 ⟶wf 6569 ℂcc 11182 MblFncmbf 25668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-pm 8887 df-mbf 25673 |
This theorem is referenced by: mbfss 25700 mbfneg 25704 mbfmulc2 25717 mbflim 25722 itgcnlem 25845 itgcnval 25855 itgre 25856 itgim 25857 iblneg 25858 itgneg 25859 iblss 25860 iblss2 25861 ibladd 25876 iblsub 25877 itgadd 25880 itgsub 25881 itgfsum 25882 iblabs 25884 iblabsr 25885 iblmulc2 25886 itgmulc2 25889 itgabs 25890 itgsplit 25891 bddmulibl 25894 itgcn 25900 ditgswap 25914 ditgsplitlem 25915 ftc1a 26098 ibladdnc 37637 itgaddnc 37640 iblsubnc 37641 itgsubnc 37642 iblabsnc 37644 iblmulc2nc 37645 itgmulc2nc 37648 itgabsnc 37649 |
Copyright terms: Public domain | W3C validator |