MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmptcl Structured version   Visualization version   GIF version

Theorem mbfmptcl 25160
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn)
mbfmptcl.2 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ 𝑉)
Assertion
Ref Expression
mbfmptcl ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Distinct variable groups:   π‘₯,𝐴   πœ‘,π‘₯
Allowed substitution hints:   𝐡(π‘₯)   𝑉(π‘₯)

Proof of Theorem mbfmptcl
StepHypRef Expression
1 mbfmptcl.1 . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn)
2 mbff 25149 . . . 4 ((π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„‚)
31, 2syl 17 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„‚)
4 mbfmptcl.2 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ 𝑉)
54ralrimiva 3146 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝑉)
6 dmmptg 6241 . . . . 5 (βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝑉 β†’ dom (π‘₯ ∈ 𝐴 ↦ 𝐡) = 𝐴)
75, 6syl 17 . . . 4 (πœ‘ β†’ dom (π‘₯ ∈ 𝐴 ↦ 𝐡) = 𝐴)
87feq2d 6703 . . 3 (πœ‘ β†’ ((π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„‚ ↔ (π‘₯ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚))
93, 8mpbid 231 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
109fvmptelcdm 7114 1 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   ↦ cmpt 5231  dom cdm 5676  βŸΆwf 6539  β„‚cc 11110  MblFncmbf 25138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-pm 8825  df-mbf 25143
This theorem is referenced by:  mbfss  25170  mbfneg  25174  mbfmulc2  25187  mbflim  25192  itgcnlem  25314  itgcnval  25324  itgre  25325  itgim  25326  iblneg  25327  itgneg  25328  iblss  25329  iblss2  25330  ibladd  25345  iblsub  25346  itgadd  25349  itgsub  25350  itgfsum  25351  iblabs  25353  iblabsr  25354  iblmulc2  25355  itgmulc2  25358  itgabs  25359  itgsplit  25360  bddmulibl  25363  itgcn  25369  ditgswap  25383  ditgsplitlem  25384  ftc1a  25561  ibladdnc  36631  itgaddnc  36634  iblsubnc  36635  itgsubnc  36636  iblabsnc  36638  iblmulc2nc  36639  itgmulc2nc  36642  itgabsnc  36643
  Copyright terms: Public domain W3C validator