MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmptcl Structured version   Visualization version   GIF version

Theorem mbfmptcl 25671
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfmptcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmptcl
StepHypRef Expression
1 mbfmptcl.1 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbff 25660 . . . 4 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 mbfmptcl.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6262 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6722 . . 3 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 232 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
109fvmptelcdm 7133 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  cmpt 5225  dom cdm 5685  wf 6557  cc 11153  MblFncmbf 25649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm 8869  df-mbf 25654
This theorem is referenced by:  mbfss  25681  mbfneg  25685  mbfmulc2  25698  mbflim  25703  itgcnlem  25825  itgcnval  25835  itgre  25836  itgim  25837  iblneg  25838  itgneg  25839  iblss  25840  iblss2  25841  ibladd  25856  iblsub  25857  itgadd  25860  itgsub  25861  itgfsum  25862  iblabs  25864  iblabsr  25865  iblmulc2  25866  itgmulc2  25869  itgabs  25870  itgsplit  25871  bddmulibl  25874  itgcn  25880  ditgswap  25894  ditgsplitlem  25895  ftc1a  26078  ibladdnc  37684  itgaddnc  37687  iblsubnc  37688  itgsubnc  37689  iblabsnc  37691  iblmulc2nc  37692  itgmulc2nc  37695  itgabsnc  37696
  Copyright terms: Public domain W3C validator