MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmptcl Structured version   Visualization version   GIF version

Theorem mbfmptcl 25653
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfmptcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfmptcl
StepHypRef Expression
1 mbfmptcl.1 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
2 mbff 25642 . . . 4 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
4 mbfmptcl.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3136 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6245 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6706 . . 3 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
93, 8mpbid 231 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℂ)
109fvmptelcdm 7119 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  cmpt 5228  dom cdm 5674  wf 6542  cc 11147  MblFncmbf 25631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-pm 8850  df-mbf 25636
This theorem is referenced by:  mbfss  25663  mbfneg  25667  mbfmulc2  25680  mbflim  25685  itgcnlem  25807  itgcnval  25817  itgre  25818  itgim  25819  iblneg  25820  itgneg  25821  iblss  25822  iblss2  25823  ibladd  25838  iblsub  25839  itgadd  25842  itgsub  25843  itgfsum  25844  iblabs  25846  iblabsr  25847  iblmulc2  25848  itgmulc2  25851  itgabs  25852  itgsplit  25853  bddmulibl  25856  itgcn  25862  ditgswap  25876  ditgsplitlem  25877  ftc1a  26060  ibladdnc  37391  itgaddnc  37394  iblsubnc  37395  itgsubnc  37396  iblabsnc  37398  iblmulc2nc  37399  itgmulc2nc  37402  itgabsnc  37403
  Copyright terms: Public domain W3C validator