MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmptcl Structured version   Visualization version   GIF version

Theorem mbfmptcl 25003
Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn)
mbfmptcl.2 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ 𝑉)
Assertion
Ref Expression
mbfmptcl ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Distinct variable groups:   π‘₯,𝐴   πœ‘,π‘₯
Allowed substitution hints:   𝐡(π‘₯)   𝑉(π‘₯)

Proof of Theorem mbfmptcl
StepHypRef Expression
1 mbfmptcl.1 . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn)
2 mbff 24992 . . . 4 ((π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„‚)
31, 2syl 17 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„‚)
4 mbfmptcl.2 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ 𝑉)
54ralrimiva 3144 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝑉)
6 dmmptg 6195 . . . . 5 (βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝑉 β†’ dom (π‘₯ ∈ 𝐴 ↦ 𝐡) = 𝐴)
75, 6syl 17 . . . 4 (πœ‘ β†’ dom (π‘₯ ∈ 𝐴 ↦ 𝐡) = 𝐴)
87feq2d 6655 . . 3 (πœ‘ β†’ ((π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„‚ ↔ (π‘₯ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚))
93, 8mpbid 231 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
109fvmptelcdm 7062 1 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065   ↦ cmpt 5189  dom cdm 5634  βŸΆwf 6493  β„‚cc 11050  MblFncmbf 24981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-pm 8769  df-mbf 24986
This theorem is referenced by:  mbfss  25013  mbfneg  25017  mbfmulc2  25030  mbflim  25035  itgcnlem  25157  itgcnval  25167  itgre  25168  itgim  25169  iblneg  25170  itgneg  25171  iblss  25172  iblss2  25173  ibladd  25188  iblsub  25189  itgadd  25192  itgsub  25193  itgfsum  25194  iblabs  25196  iblabsr  25197  iblmulc2  25198  itgmulc2  25201  itgabs  25202  itgsplit  25203  bddmulibl  25206  itgcn  25212  ditgswap  25226  ditgsplitlem  25227  ftc1a  25404  ibladdnc  36138  itgaddnc  36141  iblsubnc  36142  itgsubnc  36143  iblabsnc  36145  iblmulc2nc  36146  itgmulc2nc  36149  itgabsnc  36150
  Copyright terms: Public domain W3C validator