Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measun Structured version   Visualization version   GIF version

Theorem measun 34219
Description: The measure the union of two disjoint sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
measun ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem measun
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝑀 ∈ (measures‘𝑆))
2 measbase 34205 . . . . 5 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
323ad2ant1 1133 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝑆 ran sigAlgebra)
4 simp2l 1200 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝐴𝑆)
5 simp2r 1201 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝐵𝑆)
6 unelsiga 34142 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
73, 4, 5, 6syl3anc 1373 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ 𝑆)
8 ssun2 4129 . . . 4 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
10 measxun2 34218 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆𝐵𝑆) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))))
111, 7, 5, 9, 10syl121anc 1377 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))))
12 difun2 4431 . . . . . 6 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
13 uneq1 4111 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∪ (𝐴𝐵)) = (∅ ∪ (𝐴𝐵)))
14 uncom 4108 . . . . . . . . 9 (∅ ∪ (𝐴𝐵)) = ((𝐴𝐵) ∪ ∅)
15 un0 4344 . . . . . . . . 9 ((𝐴𝐵) ∪ ∅) = (𝐴𝐵)
1614, 15eqtri 2754 . . . . . . . 8 (∅ ∪ (𝐴𝐵)) = (𝐴𝐵)
1713, 16eqtrdi 2782 . . . . . . 7 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∪ (𝐴𝐵)) = (𝐴𝐵))
18 inundif 4429 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
1917, 18eqtr3di 2781 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
2012, 19eqtrid 2778 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)
2120fveq2d 6826 . . . 4 ((𝐴𝐵) = ∅ → (𝑀‘((𝐴𝐵) ∖ 𝐵)) = (𝑀𝐴))
2221oveq2d 7362 . . 3 ((𝐴𝐵) = ∅ → ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))) = ((𝑀𝐵) +𝑒 (𝑀𝐴)))
23223ad2ant3 1135 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))) = ((𝑀𝐵) +𝑒 (𝑀𝐴)))
24 iccssxr 13327 . . . . 5 (0[,]+∞) ⊆ ℝ*
25 measvxrge0 34213 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
2624, 25sselid 3932 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ ℝ*)
271, 5, 26syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀𝐵) ∈ ℝ*)
28 measvxrge0 34213 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
2924, 28sselid 3932 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ ℝ*)
301, 4, 29syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀𝐴) ∈ ℝ*)
31 xaddcom 13136 . . 3 (((𝑀𝐵) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ*) → ((𝑀𝐵) +𝑒 (𝑀𝐴)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
3227, 30, 31syl2anc 584 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → ((𝑀𝐵) +𝑒 (𝑀𝐴)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
3311, 23, 323eqtrd 2770 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cdif 3899  cun 3900  cin 3901  wss 3902  c0 4283   cuni 4859  ran crn 5617  cfv 6481  (class class class)co 7346  0cc0 11003  +∞cpnf 11140  *cxr 11142   +𝑒 cxad 13006  [,]cicc 13245  sigAlgebracsiga 34116  measurescmeas 34203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-ac2 10351  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-ac 10004  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-ordt 17402  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-ps 18469  df-tsr 18470  df-plusf 18544  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20459  df-subrg 20483  df-abv 20722  df-lmod 20793  df-scaf 20794  df-sra 21105  df-rgmod 21106  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-tmd 23985  df-tgp 23986  df-tsms 24040  df-trg 24073  df-xms 24233  df-ms 24234  df-tms 24235  df-nm 24495  df-ngp 24496  df-nrg 24498  df-nlm 24499  df-ii 24795  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-esum 34036  df-siga 34117  df-meas 34204
This theorem is referenced by:  measvuni  34222  measunl  34224
  Copyright terms: Public domain W3C validator