| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measun | Structured version Visualization version GIF version | ||
| Description: The measure the union of two disjoint sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
| Ref | Expression |
|---|---|
| measun | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑀 ∈ (measures‘𝑆)) | |
| 2 | measbase 34163 | . . . . 5 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 4 | simp2l 1200 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ∈ 𝑆) | |
| 5 | simp2r 1201 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ∈ 𝑆) | |
| 6 | unelsiga 34100 | . . . 4 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∪ 𝐵) ∈ 𝑆) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ∈ 𝑆) |
| 8 | ssun2 4132 | . . . 4 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 9 | 8 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ⊆ (𝐴 ∪ 𝐵)) |
| 10 | measxun2 34176 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴 ∪ 𝐵) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵)) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐵) +𝑒 (𝑀‘((𝐴 ∪ 𝐵) ∖ 𝐵)))) | |
| 11 | 1, 7, 5, 9, 10 | syl121anc 1377 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐵) +𝑒 (𝑀‘((𝐴 ∪ 𝐵) ∖ 𝐵)))) |
| 12 | difun2 4434 | . . . . . 6 ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | |
| 13 | uneq1 4114 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = (∅ ∪ (𝐴 ∖ 𝐵))) | |
| 14 | uncom 4111 | . . . . . . . . 9 ⊢ (∅ ∪ (𝐴 ∖ 𝐵)) = ((𝐴 ∖ 𝐵) ∪ ∅) | |
| 15 | un0 4347 | . . . . . . . . 9 ⊢ ((𝐴 ∖ 𝐵) ∪ ∅) = (𝐴 ∖ 𝐵) | |
| 16 | 14, 15 | eqtri 2752 | . . . . . . . 8 ⊢ (∅ ∪ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| 17 | 13, 16 | eqtrdi 2780 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵)) |
| 18 | inundif 4432 | . . . . . . 7 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
| 19 | 17, 18 | eqtr3di 2779 | . . . . . 6 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝐴 ∖ 𝐵) = 𝐴) |
| 20 | 12, 19 | eqtrid 2776 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝐴 ∪ 𝐵) ∖ 𝐵) = 𝐴) |
| 21 | 20 | fveq2d 6830 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑀‘((𝐴 ∪ 𝐵) ∖ 𝐵)) = (𝑀‘𝐴)) |
| 22 | 21 | oveq2d 7369 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ → ((𝑀‘𝐵) +𝑒 (𝑀‘((𝐴 ∪ 𝐵) ∖ 𝐵))) = ((𝑀‘𝐵) +𝑒 (𝑀‘𝐴))) |
| 23 | 22 | 3ad2ant3 1135 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑀‘𝐵) +𝑒 (𝑀‘((𝐴 ∪ 𝐵) ∖ 𝐵))) = ((𝑀‘𝐵) +𝑒 (𝑀‘𝐴))) |
| 24 | iccssxr 13351 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 25 | measvxrge0 34171 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
| 26 | 24, 25 | sselid 3935 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ ℝ*) |
| 27 | 1, 5, 26 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑀‘𝐵) ∈ ℝ*) |
| 28 | measvxrge0 34171 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
| 29 | 24, 28 | sselid 3935 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ ℝ*) |
| 30 | 1, 4, 29 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑀‘𝐴) ∈ ℝ*) |
| 31 | xaddcom 13160 | . . 3 ⊢ (((𝑀‘𝐵) ∈ ℝ* ∧ (𝑀‘𝐴) ∈ ℝ*) → ((𝑀‘𝐵) +𝑒 (𝑀‘𝐴)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | |
| 32 | 27, 30, 31 | syl2anc 584 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑀‘𝐵) +𝑒 (𝑀‘𝐴)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| 33 | 11, 23, 32 | 3eqtrd 2768 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ∪ cuni 4861 ran crn 5624 ‘cfv 6486 (class class class)co 7353 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 +𝑒 cxad 13030 [,]cicc 13269 sigAlgebracsiga 34074 measurescmeas 34161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-ordt 17423 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-ps 18490 df-tsr 18491 df-plusf 18531 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-subrng 20449 df-subrg 20473 df-abv 20712 df-lmod 20783 df-scaf 20784 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-tmd 23975 df-tgp 23976 df-tsms 24030 df-trg 24063 df-xms 24224 df-ms 24225 df-tms 24226 df-nm 24486 df-ngp 24487 df-nrg 24489 df-nlm 24490 df-ii 24786 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 df-esum 33994 df-siga 34075 df-meas 34162 |
| This theorem is referenced by: measvuni 34180 measunl 34182 |
| Copyright terms: Public domain | W3C validator |