Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measun Structured version   Visualization version   GIF version

Theorem measun 31147
Description: The measure the union of two disjoint sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
measun ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem measun
StepHypRef Expression
1 simp1 1117 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝑀 ∈ (measures‘𝑆))
2 measbase 31133 . . . . 5 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
323ad2ant1 1114 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝑆 ran sigAlgebra)
4 simp2l 1180 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝐴𝑆)
5 simp2r 1181 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝐵𝑆)
6 unelsiga 31070 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
73, 4, 5, 6syl3anc 1352 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ 𝑆)
8 ssun2 4040 . . . 4 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
10 measxun2 31146 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ((𝐴𝐵) ∈ 𝑆𝐵𝑆) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))))
111, 7, 5, 9, 10syl121anc 1356 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))))
12 difun2 4315 . . . . . 6 ((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
13 inundif 4313 . . . . . . 7 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
14 uneq1 4023 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∪ (𝐴𝐵)) = (∅ ∪ (𝐴𝐵)))
15 uncom 4020 . . . . . . . . 9 (∅ ∪ (𝐴𝐵)) = ((𝐴𝐵) ∪ ∅)
16 un0 4233 . . . . . . . . 9 ((𝐴𝐵) ∪ ∅) = (𝐴𝐵)
1715, 16eqtri 2804 . . . . . . . 8 (∅ ∪ (𝐴𝐵)) = (𝐴𝐵)
1814, 17syl6eq 2832 . . . . . . 7 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∪ (𝐴𝐵)) = (𝐴𝐵))
1913, 18syl5reqr 2831 . . . . . 6 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
2012, 19syl5eq 2828 . . . . 5 ((𝐴𝐵) = ∅ → ((𝐴𝐵) ∖ 𝐵) = 𝐴)
2120fveq2d 6508 . . . 4 ((𝐴𝐵) = ∅ → (𝑀‘((𝐴𝐵) ∖ 𝐵)) = (𝑀𝐴))
2221oveq2d 6998 . . 3 ((𝐴𝐵) = ∅ → ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))) = ((𝑀𝐵) +𝑒 (𝑀𝐴)))
23223ad2ant3 1116 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → ((𝑀𝐵) +𝑒 (𝑀‘((𝐴𝐵) ∖ 𝐵))) = ((𝑀𝐵) +𝑒 (𝑀𝐴)))
24 iccssxr 12641 . . . . 5 (0[,]+∞) ⊆ ℝ*
25 measvxrge0 31141 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
2624, 25sseldi 3858 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ ℝ*)
271, 5, 26syl2anc 576 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀𝐵) ∈ ℝ*)
28 measvxrge0 31141 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
2924, 28sseldi 3858 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ ℝ*)
301, 4, 29syl2anc 576 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀𝐴) ∈ ℝ*)
31 xaddcom 12456 . . 3 (((𝑀𝐵) ∈ ℝ* ∧ (𝑀𝐴) ∈ ℝ*) → ((𝑀𝐵) +𝑒 (𝑀𝐴)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
3227, 30, 31syl2anc 576 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → ((𝑀𝐵) +𝑒 (𝑀𝐴)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
3311, 23, 323eqtrd 2820 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝐴𝐵) = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  cdif 3828  cun 3829  cin 3830  wss 3831  c0 4181   cuni 4717  ran crn 5412  cfv 6193  (class class class)co 6982  0cc0 10341  +∞cpnf 10477  *cxr 10479   +𝑒 cxad 12328  [,]cicc 12563  sigAlgebracsiga 31043  measurescmeas 31131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904  ax-ac2 9689  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419  ax-addf 10420  ax-mulf 10421
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-iin 4800  df-disj 4903  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-of 7233  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-map 8214  df-pm 8215  df-ixp 8266  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-fi 8676  df-sup 8707  df-inf 8708  df-oi 8775  df-dju 9130  df-card 9168  df-acn 9171  df-ac 9342  df-cda 9394  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-3 11510  df-4 11511  df-5 11512  df-6 11513  df-7 11514  df-8 11515  df-9 11516  df-n0 11714  df-z 11800  df-dec 11918  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-ioo 12564  df-ioc 12565  df-ico 12566  df-icc 12567  df-fz 12715  df-fzo 12856  df-fl 12983  df-mod 13059  df-seq 13191  df-exp 13251  df-fac 13455  df-bc 13484  df-hash 13512  df-shft 14293  df-cj 14325  df-re 14326  df-im 14327  df-sqrt 14461  df-abs 14462  df-limsup 14695  df-clim 14712  df-rlim 14713  df-sum 14910  df-ef 15287  df-sin 15289  df-cos 15290  df-pi 15292  df-struct 16347  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-ress 16353  df-plusg 16440  df-mulr 16441  df-starv 16442  df-sca 16443  df-vsca 16444  df-ip 16445  df-tset 16446  df-ple 16447  df-ds 16449  df-unif 16450  df-hom 16451  df-cco 16452  df-rest 16558  df-topn 16559  df-0g 16577  df-gsum 16578  df-topgen 16579  df-pt 16580  df-prds 16583  df-ordt 16636  df-xrs 16637  df-qtop 16642  df-imas 16643  df-xps 16645  df-mre 16727  df-mrc 16728  df-acs 16730  df-ps 17680  df-tsr 17681  df-plusf 17721  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-mhm 17815  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-mulg 18024  df-subg 18072  df-cntz 18230  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-cring 19035  df-subrg 19268  df-abv 19322  df-lmod 19370  df-scaf 19371  df-sra 19678  df-rgmod 19679  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-fbas 20259  df-fg 20260  df-cnfld 20263  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-cld 21346  df-ntr 21347  df-cls 21348  df-nei 21425  df-lp 21463  df-perf 21464  df-cn 21554  df-cnp 21555  df-haus 21642  df-tx 21889  df-hmeo 22082  df-fil 22173  df-fm 22265  df-flim 22266  df-flf 22267  df-tmd 22399  df-tgp 22400  df-tsms 22453  df-trg 22486  df-xms 22648  df-ms 22649  df-tms 22650  df-nm 22910  df-ngp 22911  df-nrg 22913  df-nlm 22914  df-ii 23203  df-cncf 23204  df-limc 24182  df-dv 24183  df-log 24856  df-esum 30963  df-siga 31044  df-meas 31132
This theorem is referenced by:  measvuni  31150  measunl  31152
  Copyright terms: Public domain W3C validator