| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measiun | Structured version Visualization version GIF version | ||
| Description: A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) |
| Ref | Expression |
|---|---|
| measiun.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
| measiun.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| measiun.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ 𝑆) |
| measiun.4 | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵) |
| Ref | Expression |
|---|---|
| measiun | ⊢ (𝜑 → (𝑀‘𝐴) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13337 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 2 | measiun.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 3 | measiun.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | measvxrge0 34290 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| 6 | 1, 5 | sselid 3928 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
| 7 | measbase 34282 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 9 | measiun.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ 𝑆) | |
| 10 | 9 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℕ 𝐵 ∈ 𝑆) |
| 11 | sigaclcu2 34205 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑛 ∈ ℕ 𝐵 ∈ 𝑆) → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) |
| 13 | measvxrge0 34290 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ (0[,]+∞)) | |
| 14 | 2, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ (0[,]+∞)) |
| 15 | 1, 14 | sselid 3928 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ ℝ*) |
| 16 | nnex 12142 | . . . 4 ⊢ ℕ ∈ V | |
| 17 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
| 18 | measvxrge0 34290 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
| 19 | 17, 9, 18 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 20 | 19 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 21 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑛ℕ | |
| 22 | 21 | esumcl 34115 | . . . 4 ⊢ ((ℕ ∈ V ∧ ∀𝑛 ∈ ℕ (𝑀‘𝐵) ∈ (0[,]+∞)) → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ (0[,]+∞)) |
| 23 | 16, 20, 22 | sylancr 587 | . . 3 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ (0[,]+∞)) |
| 24 | 1, 23 | sselid 3928 | . 2 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ ℝ*) |
| 25 | measiun.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵) | |
| 26 | 2, 3, 12, 25 | measssd 34300 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘∪ 𝑛 ∈ ℕ 𝐵)) |
| 27 | nfcsb1v 3870 | . . . 4 ⊢ Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐵 | |
| 28 | csbeq1a 3860 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑛⦌𝐵) | |
| 29 | eqidd 2734 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
| 30 | 29 | orcd 873 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^𝑚))) |
| 31 | 27, 28, 30, 2, 9 | measiuns 34302 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) = Σ*𝑛 ∈ ℕ(𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵))) |
| 32 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) |
| 33 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 34 | nfv 1915 | . . . . . . . . . . 11 ⊢ Ⅎ𝑛𝜑 | |
| 35 | nfcv 2895 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑛𝑘 | |
| 36 | 35 | nfel1 2912 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑛 𝑘 ∈ ℕ |
| 37 | 27 | nfel1 2912 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 |
| 38 | 36, 37 | nfim 1897 | . . . . . . . . . . 11 ⊢ Ⅎ𝑛(𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
| 39 | 34, 38 | nfim 1897 | . . . . . . . . . 10 ⊢ Ⅎ𝑛(𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) |
| 40 | eleq1w 2816 | . . . . . . . . . . . 12 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ)) | |
| 41 | 28 | eleq1d 2818 | . . . . . . . . . . . 12 ⊢ (𝑛 = 𝑘 → (𝐵 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) |
| 42 | 40, 41 | imbi12d 344 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑘 → ((𝑛 ∈ ℕ → 𝐵 ∈ 𝑆) ↔ (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆))) |
| 43 | 42 | imbi2d 340 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑘 → ((𝜑 → (𝑛 ∈ ℕ → 𝐵 ∈ 𝑆)) ↔ (𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)))) |
| 44 | 9 | ex 412 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑛 ∈ ℕ → 𝐵 ∈ 𝑆)) |
| 45 | 39, 43, 44 | chvarfv 2245 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) |
| 46 | 45 | ralrimiv 3124 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
| 47 | fzossnn 13618 | . . . . . . . . . 10 ⊢ (1..^𝑛) ⊆ ℕ | |
| 48 | ssralv 3999 | . . . . . . . . . 10 ⊢ ((1..^𝑛) ⊆ ℕ → (∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 → ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) | |
| 49 | 47, 48 | ax-mp 5 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 → ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
| 50 | sigaclfu2 34206 | . . . . . . . . 9 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | |
| 51 | 49, 50 | sylan2 593 | . . . . . . . 8 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
| 52 | 8, 46, 51 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
| 53 | 52 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
| 54 | difelsiga 34218 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) | |
| 55 | 33, 9, 53, 54 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) |
| 56 | measvxrge0 34290 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ∈ (0[,]+∞)) | |
| 57 | 17, 55, 56 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ∈ (0[,]+∞)) |
| 58 | difssd 4086 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ⊆ 𝐵) | |
| 59 | 17, 55, 9, 58 | measssd 34300 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ≤ (𝑀‘𝐵)) |
| 60 | 32, 57, 19, 59 | esumle 34143 | . . 3 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
| 61 | 31, 60 | eqbrtrd 5117 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
| 62 | 6, 15, 24, 26, 61 | xrletrd 13067 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⦋csb 3846 ∖ cdif 3895 ⊆ wss 3898 ∪ cuni 4860 ∪ ciun 4943 class class class wbr 5095 ran crn 5622 ‘cfv 6489 (class class class)co 7355 0cc0 11017 1c1 11018 +∞cpnf 11154 ℝ*cxr 11156 ≤ cle 11158 ℕcn 12136 [,]cicc 13255 ..^cfzo 13561 Σ*cesum 34112 sigAlgebracsiga 34193 measurescmeas 34280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-ac2 10365 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-fi 9306 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-acn 9846 df-ac 10018 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13256 df-ioc 13257 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-mod 13781 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-shft 14981 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-limsup 15385 df-clim 15402 df-rlim 15403 df-sum 15601 df-ef 15981 df-sin 15983 df-cos 15984 df-pi 15986 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-hom 17192 df-cco 17193 df-rest 17333 df-topn 17334 df-0g 17352 df-gsum 17353 df-topgen 17354 df-pt 17355 df-prds 17358 df-ordt 17413 df-xrs 17414 df-qtop 17419 df-imas 17420 df-xps 17422 df-mre 17496 df-mrc 17497 df-acs 17499 df-ps 18480 df-tsr 18481 df-plusf 18555 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-cring 20162 df-subrng 20470 df-subrg 20494 df-abv 20733 df-lmod 20804 df-scaf 20805 df-sra 21116 df-rgmod 21117 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-cnfld 21301 df-top 22829 df-topon 22846 df-topsp 22868 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-lp 23071 df-perf 23072 df-cn 23162 df-cnp 23163 df-haus 23250 df-tx 23497 df-hmeo 23690 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-tmd 24007 df-tgp 24008 df-tsms 24062 df-trg 24095 df-xms 24255 df-ms 24256 df-tms 24257 df-nm 24517 df-ngp 24518 df-nrg 24520 df-nlm 24521 df-ii 24817 df-cncf 24818 df-limc 25814 df-dv 25815 df-log 26512 df-esum 34113 df-siga 34194 df-meas 34281 |
| This theorem is referenced by: boolesineq 34540 |
| Copyright terms: Public domain | W3C validator |