|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measiun | Structured version Visualization version GIF version | ||
| Description: A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) | 
| Ref | Expression | 
|---|---|
| measiun.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | 
| measiun.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| measiun.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ 𝑆) | 
| measiun.4 | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵) | 
| Ref | Expression | 
|---|---|
| measiun | ⊢ (𝜑 → (𝑀‘𝐴) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iccssxr 13471 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 2 | measiun.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 3 | measiun.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | measvxrge0 34207 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) | 
| 6 | 1, 5 | sselid 3980 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) | 
| 7 | measbase 34199 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | 
| 9 | measiun.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ 𝑆) | |
| 10 | 9 | ralrimiva 3145 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℕ 𝐵 ∈ 𝑆) | 
| 11 | sigaclcu2 34122 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑛 ∈ ℕ 𝐵 ∈ 𝑆) → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) | 
| 13 | measvxrge0 34207 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ (0[,]+∞)) | |
| 14 | 2, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ (0[,]+∞)) | 
| 15 | 1, 14 | sselid 3980 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ ℝ*) | 
| 16 | nnex 12273 | . . . 4 ⊢ ℕ ∈ V | |
| 17 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) | 
| 18 | measvxrge0 34207 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
| 19 | 17, 9, 18 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝐵) ∈ (0[,]+∞)) | 
| 20 | 19 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑀‘𝐵) ∈ (0[,]+∞)) | 
| 21 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑛ℕ | |
| 22 | 21 | esumcl 34032 | . . . 4 ⊢ ((ℕ ∈ V ∧ ∀𝑛 ∈ ℕ (𝑀‘𝐵) ∈ (0[,]+∞)) → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ (0[,]+∞)) | 
| 23 | 16, 20, 22 | sylancr 587 | . . 3 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ (0[,]+∞)) | 
| 24 | 1, 23 | sselid 3980 | . 2 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ ℝ*) | 
| 25 | measiun.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵) | |
| 26 | 2, 3, 12, 25 | measssd 34217 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘∪ 𝑛 ∈ ℕ 𝐵)) | 
| 27 | nfcsb1v 3922 | . . . 4 ⊢ Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐵 | |
| 28 | csbeq1a 3912 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑛⦌𝐵) | |
| 29 | eqidd 2737 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
| 30 | 29 | orcd 873 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^𝑚))) | 
| 31 | 27, 28, 30, 2, 9 | measiuns 34219 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) = Σ*𝑛 ∈ ℕ(𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵))) | 
| 32 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) | 
| 33 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) | 
| 34 | nfv 1913 | . . . . . . . . . . 11 ⊢ Ⅎ𝑛𝜑 | |
| 35 | nfcv 2904 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑛𝑘 | |
| 36 | 35 | nfel1 2921 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑛 𝑘 ∈ ℕ | 
| 37 | 27 | nfel1 2921 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 | 
| 38 | 36, 37 | nfim 1895 | . . . . . . . . . . 11 ⊢ Ⅎ𝑛(𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | 
| 39 | 34, 38 | nfim 1895 | . . . . . . . . . 10 ⊢ Ⅎ𝑛(𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) | 
| 40 | eleq1w 2823 | . . . . . . . . . . . 12 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ)) | |
| 41 | 28 | eleq1d 2825 | . . . . . . . . . . . 12 ⊢ (𝑛 = 𝑘 → (𝐵 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) | 
| 42 | 40, 41 | imbi12d 344 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑘 → ((𝑛 ∈ ℕ → 𝐵 ∈ 𝑆) ↔ (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆))) | 
| 43 | 42 | imbi2d 340 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑘 → ((𝜑 → (𝑛 ∈ ℕ → 𝐵 ∈ 𝑆)) ↔ (𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)))) | 
| 44 | 9 | ex 412 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑛 ∈ ℕ → 𝐵 ∈ 𝑆)) | 
| 45 | 39, 43, 44 | chvarfv 2239 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) | 
| 46 | 45 | ralrimiv 3144 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | 
| 47 | fzossnn 13752 | . . . . . . . . . 10 ⊢ (1..^𝑛) ⊆ ℕ | |
| 48 | ssralv 4051 | . . . . . . . . . 10 ⊢ ((1..^𝑛) ⊆ ℕ → (∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 → ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) | |
| 49 | 47, 48 | ax-mp 5 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 → ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | 
| 50 | sigaclfu2 34123 | . . . . . . . . 9 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | |
| 51 | 49, 50 | sylan2 593 | . . . . . . . 8 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | 
| 52 | 8, 46, 51 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | 
| 53 | 52 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | 
| 54 | difelsiga 34135 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) | |
| 55 | 33, 9, 53, 54 | syl3anc 1372 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) | 
| 56 | measvxrge0 34207 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ∈ (0[,]+∞)) | |
| 57 | 17, 55, 56 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ∈ (0[,]+∞)) | 
| 58 | difssd 4136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ⊆ 𝐵) | |
| 59 | 17, 55, 9, 58 | measssd 34217 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ≤ (𝑀‘𝐵)) | 
| 60 | 32, 57, 19, 59 | esumle 34060 | . . 3 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) | 
| 61 | 31, 60 | eqbrtrd 5164 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) | 
| 62 | 6, 15, 24, 26, 61 | xrletrd 13205 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ⦋csb 3898 ∖ cdif 3947 ⊆ wss 3950 ∪ cuni 4906 ∪ ciun 4990 class class class wbr 5142 ran crn 5685 ‘cfv 6560 (class class class)co 7432 0cc0 11156 1c1 11157 +∞cpnf 11293 ℝ*cxr 11295 ≤ cle 11297 ℕcn 12267 [,]cicc 13391 ..^cfzo 13695 Σ*cesum 34029 sigAlgebracsiga 34110 measurescmeas 34197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-ac2 10504 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-acn 9983 df-ac 10157 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ioc 13393 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-shft 15107 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-limsup 15508 df-clim 15525 df-rlim 15526 df-sum 15724 df-ef 16104 df-sin 16106 df-cos 16107 df-pi 16109 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-ordt 17547 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-ps 18612 df-tsr 18613 df-plusf 18653 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-subrng 20547 df-subrg 20571 df-abv 20811 df-lmod 20861 df-scaf 20862 df-sra 21173 df-rgmod 21174 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-fbas 21362 df-fg 21363 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-lp 23145 df-perf 23146 df-cn 23236 df-cnp 23237 df-haus 23324 df-tx 23571 df-hmeo 23764 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-tmd 24081 df-tgp 24082 df-tsms 24136 df-trg 24169 df-xms 24331 df-ms 24332 df-tms 24333 df-nm 24596 df-ngp 24597 df-nrg 24599 df-nlm 24600 df-ii 24904 df-cncf 24905 df-limc 25902 df-dv 25903 df-log 26599 df-esum 34030 df-siga 34111 df-meas 34198 | 
| This theorem is referenced by: boolesineq 34458 | 
| Copyright terms: Public domain | W3C validator |