![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measiun | Structured version Visualization version GIF version |
Description: A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.) |
Ref | Expression |
---|---|
measiun.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
measiun.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
measiun.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ 𝑆) |
measiun.4 | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵) |
Ref | Expression |
---|---|
measiun | ⊢ (𝜑 → (𝑀‘𝐴) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13461 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | measiun.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
3 | measiun.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | measvxrge0 34038 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
5 | 2, 3, 4 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
6 | 1, 5 | sselid 3977 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
7 | measbase 34030 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
9 | measiun.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ 𝑆) | |
10 | 9 | ralrimiva 3136 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℕ 𝐵 ∈ 𝑆) |
11 | sigaclcu2 33953 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑛 ∈ ℕ 𝐵 ∈ 𝑆) → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) | |
12 | 8, 10, 11 | syl2anc 582 | . . . 4 ⊢ (𝜑 → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) |
13 | measvxrge0 34038 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆) → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ (0[,]+∞)) | |
14 | 2, 12, 13 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ (0[,]+∞)) |
15 | 1, 14 | sselid 3977 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ∈ ℝ*) |
16 | nnex 12270 | . . . 4 ⊢ ℕ ∈ V | |
17 | 2 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ (measures‘𝑆)) |
18 | measvxrge0 34038 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
19 | 17, 9, 18 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
20 | 19 | ralrimiva 3136 | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝑀‘𝐵) ∈ (0[,]+∞)) |
21 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑛ℕ | |
22 | 21 | esumcl 33863 | . . . 4 ⊢ ((ℕ ∈ V ∧ ∀𝑛 ∈ ℕ (𝑀‘𝐵) ∈ (0[,]+∞)) → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ (0[,]+∞)) |
23 | 16, 20, 22 | sylancr 585 | . . 3 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ (0[,]+∞)) |
24 | 1, 23 | sselid 3977 | . 2 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘𝐵) ∈ ℝ*) |
25 | measiun.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵) | |
26 | 2, 3, 12, 25 | measssd 34048 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘∪ 𝑛 ∈ ℕ 𝐵)) |
27 | nfcsb1v 3917 | . . . 4 ⊢ Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐵 | |
28 | csbeq1a 3906 | . . . 4 ⊢ (𝑛 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑛⦌𝐵) | |
29 | eqidd 2727 | . . . . 5 ⊢ (𝜑 → ℕ = ℕ) | |
30 | 29 | orcd 871 | . . . 4 ⊢ (𝜑 → (ℕ = ℕ ∨ ℕ = (1..^𝑚))) |
31 | 27, 28, 30, 2, 9 | measiuns 34050 | . . 3 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) = Σ*𝑛 ∈ ℕ(𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵))) |
32 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) |
33 | 8 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑆 ∈ ∪ ran sigAlgebra) |
34 | nfv 1910 | . . . . . . . . . . 11 ⊢ Ⅎ𝑛𝜑 | |
35 | nfcv 2892 | . . . . . . . . . . . . 13 ⊢ Ⅎ𝑛𝑘 | |
36 | 35 | nfel1 2909 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑛 𝑘 ∈ ℕ |
37 | 27 | nfel1 2909 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑛⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 |
38 | 36, 37 | nfim 1892 | . . . . . . . . . . 11 ⊢ Ⅎ𝑛(𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
39 | 34, 38 | nfim 1892 | . . . . . . . . . 10 ⊢ Ⅎ𝑛(𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) |
40 | eleq1w 2809 | . . . . . . . . . . . 12 ⊢ (𝑛 = 𝑘 → (𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ)) | |
41 | 28 | eleq1d 2811 | . . . . . . . . . . . 12 ⊢ (𝑛 = 𝑘 → (𝐵 ∈ 𝑆 ↔ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) |
42 | 40, 41 | imbi12d 343 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑘 → ((𝑛 ∈ ℕ → 𝐵 ∈ 𝑆) ↔ (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆))) |
43 | 42 | imbi2d 339 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑘 → ((𝜑 → (𝑛 ∈ ℕ → 𝐵 ∈ 𝑆)) ↔ (𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)))) |
44 | 9 | ex 411 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑛 ∈ ℕ → 𝐵 ∈ 𝑆)) |
45 | 39, 43, 44 | chvarfv 2229 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ ℕ → ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) |
46 | 45 | ralrimiv 3135 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
47 | fzossnn 13735 | . . . . . . . . . 10 ⊢ (1..^𝑛) ⊆ ℕ | |
48 | ssralv 4048 | . . . . . . . . . 10 ⊢ ((1..^𝑛) ⊆ ℕ → (∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 → ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆)) | |
49 | 47, 48 | ax-mp 5 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆 → ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
50 | sigaclfu2 33954 | . . . . . . . . 9 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) | |
51 | 49, 50 | sylan2 591 | . . . . . . . 8 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑘 ∈ ℕ ⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
52 | 8, 46, 51 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
53 | 52 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) |
54 | difelsiga 33966 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ∧ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵 ∈ 𝑆) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) | |
55 | 33, 9, 53, 54 | syl3anc 1368 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) |
56 | measvxrge0 34038 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ∈ 𝑆) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ∈ (0[,]+∞)) | |
57 | 17, 55, 56 | syl2anc 582 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ∈ (0[,]+∞)) |
58 | difssd 4132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵) ⊆ 𝐵) | |
59 | 17, 55, 9, 58 | measssd 34048 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ≤ (𝑀‘𝐵)) |
60 | 32, 57, 19, 59 | esumle 33891 | . . 3 ⊢ (𝜑 → Σ*𝑛 ∈ ℕ(𝑀‘(𝐵 ∖ ∪ 𝑘 ∈ (1..^𝑛)⦋𝑘 / 𝑛⦌𝐵)) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
61 | 31, 60 | eqbrtrd 5175 | . 2 ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ ℕ 𝐵) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
62 | 6, 15, 24, 26, 61 | xrletrd 13195 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ Σ*𝑛 ∈ ℕ(𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 ⦋csb 3892 ∖ cdif 3944 ⊆ wss 3947 ∪ cuni 4913 ∪ ciun 5001 class class class wbr 5153 ran crn 5683 ‘cfv 6554 (class class class)co 7424 0cc0 11158 1c1 11159 +∞cpnf 11295 ℝ*cxr 11297 ≤ cle 11299 ℕcn 12264 [,]cicc 13381 ..^cfzo 13681 Σ*cesum 33860 sigAlgebracsiga 33941 measurescmeas 34028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-ac2 10506 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-disj 5119 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-dju 9944 df-card 9982 df-acn 9985 df-ac 10159 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ioc 13383 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-fac 14291 df-bc 14320 df-hash 14348 df-shft 15072 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-ef 16069 df-sin 16071 df-cos 16072 df-pi 16074 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-ordt 17516 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-ps 18591 df-tsr 18592 df-plusf 18632 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-mhm 18773 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-cntz 19311 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-subrng 20528 df-subrg 20553 df-abv 20788 df-lmod 20838 df-scaf 20839 df-sra 21151 df-rgmod 21152 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-fbas 21340 df-fg 21341 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-ntr 23015 df-cls 23016 df-nei 23093 df-lp 23131 df-perf 23132 df-cn 23222 df-cnp 23223 df-haus 23310 df-tx 23557 df-hmeo 23750 df-fil 23841 df-fm 23933 df-flim 23934 df-flf 23935 df-tmd 24067 df-tgp 24068 df-tsms 24122 df-trg 24155 df-xms 24317 df-ms 24318 df-tms 24319 df-nm 24582 df-ngp 24583 df-nrg 24585 df-nlm 24586 df-ii 24888 df-cncf 24889 df-limc 25886 df-dv 25887 df-log 26583 df-esum 33861 df-siga 33942 df-meas 34029 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |