| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircl | Structured version Visualization version GIF version | ||
| Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mircl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mircl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 28641 | . 2 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 10 | mircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 11 | 9, 10 | ffvelcdmd 7026 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 pInvGcmir 28633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 df-mir 28634 |
| This theorem is referenced by: mirmir 28643 mirreu 28645 mireq 28646 miriso 28651 mirmir2 28655 mirln 28657 mirconn 28659 mirhl 28660 mirbtwnhl 28661 mirhl2 28662 mircgrextend 28663 mirtrcgr 28664 miduniq 28666 miduniq1 28667 miduniq2 28668 ragcom 28679 ragcol 28680 ragmir 28681 mirrag 28682 ragflat2 28684 ragflat 28685 ragcgr 28688 footexALT 28699 footexlem1 28700 footexlem2 28701 footex 28702 colperpexlem1 28711 colperpexlem3 28713 mideulem2 28715 opphllem 28716 opphllem2 28729 opphllem3 28730 opphllem4 28731 opphllem6 28733 opphl 28735 colhp 28751 mirmid 28764 lmieu 28765 lmimid 28775 lmiisolem 28777 hypcgrlem1 28780 hypcgrlem2 28781 hypcgr 28782 sacgr 28812 |
| Copyright terms: Public domain | W3C validator |