| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircl | Structured version Visualization version GIF version | ||
| Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mircl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mircl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 28639 | . 2 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 10 | mircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 11 | 9, 10 | ffvelcdmd 7018 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 distcds 17170 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 pInvGcmir 28631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-mir 28632 |
| This theorem is referenced by: mirmir 28641 mirreu 28643 mireq 28644 miriso 28649 mirmir2 28653 mirln 28655 mirconn 28657 mirhl 28658 mirbtwnhl 28659 mirhl2 28660 mircgrextend 28661 mirtrcgr 28662 miduniq 28664 miduniq1 28665 miduniq2 28666 ragcom 28677 ragcol 28678 ragmir 28679 mirrag 28680 ragflat2 28682 ragflat 28683 ragcgr 28686 footexALT 28697 footexlem1 28698 footexlem2 28699 footex 28700 colperpexlem1 28709 colperpexlem3 28711 mideulem2 28713 opphllem 28714 opphllem2 28727 opphllem3 28728 opphllem4 28729 opphllem6 28731 opphl 28733 colhp 28749 mirmid 28762 lmieu 28763 lmimid 28773 lmiisolem 28775 hypcgrlem1 28778 hypcgrlem2 28779 hypcgr 28780 sacgr 28810 |
| Copyright terms: Public domain | W3C validator |