Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mircl | Structured version Visualization version GIF version |
Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mircl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
Ref | Expression |
---|---|
mircl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 27009 | . 2 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
10 | mircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
11 | 9, 10 | ffvelrnd 6955 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6427 Basecbs 16900 distcds 16959 TarskiGcstrkg 26776 Itvcitv 26782 LineGclng 26783 pInvGcmir 27001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-trkgc 26797 df-trkgb 26798 df-trkgcb 26799 df-trkg 26802 df-mir 27002 |
This theorem is referenced by: mirmir 27011 mirreu 27013 mireq 27014 miriso 27019 mirmir2 27023 mirln 27025 mirconn 27027 mirhl 27028 mirbtwnhl 27029 mirhl2 27030 mircgrextend 27031 mirtrcgr 27032 miduniq 27034 miduniq1 27035 miduniq2 27036 ragcom 27047 ragcol 27048 ragmir 27049 mirrag 27050 ragflat2 27052 ragflat 27053 ragcgr 27056 footexALT 27067 footexlem1 27068 footexlem2 27069 footex 27070 colperpexlem1 27079 colperpexlem3 27081 mideulem2 27083 opphllem 27084 opphllem2 27097 opphllem3 27098 opphllem4 27099 opphllem6 27101 opphl 27103 colhp 27119 mirmid 27132 lmieu 27133 lmimid 27143 lmiisolem 27145 hypcgrlem1 27148 hypcgrlem2 27149 hypcgr 27150 sacgr 27180 |
Copyright terms: Public domain | W3C validator |