| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircl | Structured version Visualization version GIF version | ||
| Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mircl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mircl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 28639 | . 2 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 10 | mircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 11 | 9, 10 | ffvelcdmd 7075 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Basecbs 17228 distcds 17280 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 pInvGcmir 28631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-mir 28632 |
| This theorem is referenced by: mirmir 28641 mirreu 28643 mireq 28644 miriso 28649 mirmir2 28653 mirln 28655 mirconn 28657 mirhl 28658 mirbtwnhl 28659 mirhl2 28660 mircgrextend 28661 mirtrcgr 28662 miduniq 28664 miduniq1 28665 miduniq2 28666 ragcom 28677 ragcol 28678 ragmir 28679 mirrag 28680 ragflat2 28682 ragflat 28683 ragcgr 28686 footexALT 28697 footexlem1 28698 footexlem2 28699 footex 28700 colperpexlem1 28709 colperpexlem3 28711 mideulem2 28713 opphllem 28714 opphllem2 28727 opphllem3 28728 opphllem4 28729 opphllem6 28731 opphl 28733 colhp 28749 mirmid 28762 lmieu 28763 lmimid 28773 lmiisolem 28775 hypcgrlem1 28778 hypcgrlem2 28779 hypcgr 28780 sacgr 28810 |
| Copyright terms: Public domain | W3C validator |