| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircl | Structured version Visualization version GIF version | ||
| Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mircl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mircl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 28623 | . 2 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 10 | mircl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 11 | 9, 10 | ffvelcdmd 7023 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 pInvGcmir 28615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 df-mir 28616 |
| This theorem is referenced by: mirmir 28625 mirreu 28627 mireq 28628 miriso 28633 mirmir2 28637 mirln 28639 mirconn 28641 mirhl 28642 mirbtwnhl 28643 mirhl2 28644 mircgrextend 28645 mirtrcgr 28646 miduniq 28648 miduniq1 28649 miduniq2 28650 ragcom 28661 ragcol 28662 ragmir 28663 mirrag 28664 ragflat2 28666 ragflat 28667 ragcgr 28670 footexALT 28681 footexlem1 28682 footexlem2 28683 footex 28684 colperpexlem1 28693 colperpexlem3 28695 mideulem2 28697 opphllem 28698 opphllem2 28711 opphllem3 28712 opphllem4 28713 opphllem6 28715 opphl 28717 colhp 28733 mirmid 28746 lmieu 28747 lmimid 28757 lmiisolem 28759 hypcgrlem1 28762 hypcgrlem2 28763 hypcgr 28764 sacgr 28794 |
| Copyright terms: Public domain | W3C validator |