MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircl Structured version   Visualization version   GIF version

Theorem mircl 28580
Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mircl.x (𝜑𝑋𝑃)
Assertion
Ref Expression
mircl (𝜑 → (𝑀𝑋) ∈ 𝑃)

Proof of Theorem mircl
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
91, 2, 3, 4, 5, 6, 7, 8mirf 28579 . 2 (𝜑𝑀:𝑃𝑃)
10 mircl.x . 2 (𝜑𝑋𝑃)
119, 10ffvelcdmd 7098 1 (𝜑 → (𝑀𝑋) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6553  Basecbs 17208  distcds 17270  TarskiGcstrkg 28346  Itvcitv 28352  LineGclng 28353  pInvGcmir 28571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-trkgc 28367  df-trkgb 28368  df-trkgcb 28369  df-trkg 28372  df-mir 28572
This theorem is referenced by:  mirmir  28581  mirreu  28583  mireq  28584  miriso  28589  mirmir2  28593  mirln  28595  mirconn  28597  mirhl  28598  mirbtwnhl  28599  mirhl2  28600  mircgrextend  28601  mirtrcgr  28602  miduniq  28604  miduniq1  28605  miduniq2  28606  ragcom  28617  ragcol  28618  ragmir  28619  mirrag  28620  ragflat2  28622  ragflat  28623  ragcgr  28626  footexALT  28637  footexlem1  28638  footexlem2  28639  footex  28640  colperpexlem1  28649  colperpexlem3  28651  mideulem2  28653  opphllem  28654  opphllem2  28667  opphllem3  28668  opphllem4  28669  opphllem6  28671  opphl  28673  colhp  28689  mirmid  28702  lmieu  28703  lmimid  28713  lmiisolem  28715  hypcgrlem1  28718  hypcgrlem2  28719  hypcgr  28720  sacgr  28750
  Copyright terms: Public domain W3C validator