MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircl Structured version   Visualization version   GIF version

Theorem mircl 26926
Description: Closure of the point inversion function. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mircl.x (𝜑𝑋𝑃)
Assertion
Ref Expression
mircl (𝜑 → (𝑀𝑋) ∈ 𝑃)

Proof of Theorem mircl
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
91, 2, 3, 4, 5, 6, 7, 8mirf 26925 . 2 (𝜑𝑀:𝑃𝑃)
10 mircl.x . 2 (𝜑𝑋𝑃)
119, 10ffvelrnd 6944 1 (𝜑 → (𝑀𝑋) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-mir 26918
This theorem is referenced by:  mirmir  26927  mirreu  26929  mireq  26930  miriso  26935  mirmir2  26939  mirln  26941  mirconn  26943  mirhl  26944  mirbtwnhl  26945  mirhl2  26946  mircgrextend  26947  mirtrcgr  26948  miduniq  26950  miduniq1  26951  miduniq2  26952  ragcom  26963  ragcol  26964  ragmir  26965  mirrag  26966  ragflat2  26968  ragflat  26969  ragcgr  26972  footexALT  26983  footexlem1  26984  footexlem2  26985  footex  26986  colperpexlem1  26995  colperpexlem3  26997  mideulem2  26999  opphllem  27000  opphllem2  27013  opphllem3  27014  opphllem4  27015  opphllem6  27017  opphl  27019  colhp  27035  mirmid  27048  lmieu  27049  lmimid  27059  lmiisolem  27061  hypcgrlem1  27064  hypcgrlem2  27065  hypcgr  27066  sacgr  27096
  Copyright terms: Public domain W3C validator