MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircom Structured version   Visualization version   GIF version

Theorem mircom 27881
Description: Variation on mirmir 27880. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
mircom.1 (𝜑 → (𝑀𝐵) = 𝐶)
Assertion
Ref Expression
mircom (𝜑 → (𝑀𝐶) = 𝐵)

Proof of Theorem mircom
StepHypRef Expression
1 mircom.1 . . 3 (𝜑 → (𝑀𝐵) = 𝐶)
21fveq2d 6885 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = (𝑀𝐶))
3 mirval.p . . 3 𝑃 = (Base‘𝐺)
4 mirval.d . . 3 = (dist‘𝐺)
5 mirval.i . . 3 𝐼 = (Itv‘𝐺)
6 mirval.l . . 3 𝐿 = (LineG‘𝐺)
7 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
8 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
9 mirval.a . . 3 (𝜑𝐴𝑃)
10 mirfv.m . . 3 𝑀 = (𝑆𝐴)
11 mirmir.b . . 3 (𝜑𝐵𝑃)
123, 4, 5, 6, 7, 8, 9, 10, 11mirmir 27880 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
132, 12eqtr3d 2775 1 (𝜑 → (𝑀𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cfv 6535  Basecbs 17131  distcds 17193  TarskiGcstrkg 27645  Itvcitv 27651  LineGclng 27652  pInvGcmir 27870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-trkgc 27666  df-trkgb 27667  df-trkgcb 27668  df-trkg 27671  df-mir 27871
This theorem is referenced by:  miduniq  27903  colperpexlem3  27950  mideulem2  27952  midex  27955  opphllem1  27965  opphllem2  27966  opphllem3  27967  opphllem5  27969  opphllem6  27970  trgcopyeulem  28023
  Copyright terms: Public domain W3C validator