| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mircom | Structured version Visualization version GIF version | ||
| Description: Variation on mirmir 28641. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mircom.1 | ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) |
| Ref | Expression |
|---|---|
| mircom | ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mircom.1 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) | |
| 2 | 1 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = (𝑀‘𝐶)) |
| 3 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 8 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 9 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 10 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 11 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | mirmir 28641 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
| 13 | 2, 12 | eqtr3d 2768 | 1 ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 distcds 17170 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 pInvGcmir 28631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-mir 28632 |
| This theorem is referenced by: miduniq 28664 colperpexlem3 28711 mideulem2 28713 midex 28716 opphllem1 28726 opphllem2 28727 opphllem3 28728 opphllem5 28730 opphllem6 28731 trgcopyeulem 28784 |
| Copyright terms: Public domain | W3C validator |