|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mircom | Structured version Visualization version GIF version | ||
| Description: Variation on mirmir 28670. (Contributed by Thierry Arnoux, 10-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) | 
| mirval.d | ⊢ − = (dist‘𝐺) | 
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) | 
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) | 
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) | 
| mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| mircom.1 | ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) | 
| Ref | Expression | 
|---|---|
| mircom | ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mircom.1 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) | |
| 2 | 1 | fveq2d 6910 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = (𝑀‘𝐶)) | 
| 3 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 8 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 9 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 10 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 11 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | mirmir 28670 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) | 
| 13 | 2, 12 | eqtr3d 2779 | 1 ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 Basecbs 17247 distcds 17306 TarskiGcstrkg 28435 Itvcitv 28441 LineGclng 28442 pInvGcmir 28660 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-trkgc 28456 df-trkgb 28457 df-trkgcb 28458 df-trkg 28461 df-mir 28661 | 
| This theorem is referenced by: miduniq 28693 colperpexlem3 28740 mideulem2 28742 midex 28745 opphllem1 28755 opphllem2 28756 opphllem3 28757 opphllem5 28759 opphllem6 28760 trgcopyeulem 28813 | 
| Copyright terms: Public domain | W3C validator |