MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircom Structured version   Visualization version   GIF version

Theorem mircom 26463
Description: Variation on mirmir 26462. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
mircom.1 (𝜑 → (𝑀𝐵) = 𝐶)
Assertion
Ref Expression
mircom (𝜑 → (𝑀𝐶) = 𝐵)

Proof of Theorem mircom
StepHypRef Expression
1 mircom.1 . . 3 (𝜑 → (𝑀𝐵) = 𝐶)
21fveq2d 6665 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = (𝑀𝐶))
3 mirval.p . . 3 𝑃 = (Base‘𝐺)
4 mirval.d . . 3 = (dist‘𝐺)
5 mirval.i . . 3 𝐼 = (Itv‘𝐺)
6 mirval.l . . 3 𝐿 = (LineG‘𝐺)
7 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
8 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
9 mirval.a . . 3 (𝜑𝐴𝑃)
10 mirfv.m . . 3 𝑀 = (𝑆𝐴)
11 mirmir.b . . 3 (𝜑𝐵𝑃)
123, 4, 5, 6, 7, 8, 9, 10, 11mirmir 26462 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
132, 12eqtr3d 2861 1 (𝜑 → (𝑀𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cfv 6343  Basecbs 16483  distcds 16574  TarskiGcstrkg 26230  Itvcitv 26236  LineGclng 26237  pInvGcmir 26452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-trkgc 26248  df-trkgb 26249  df-trkgcb 26250  df-trkg 26253  df-mir 26453
This theorem is referenced by:  miduniq  26485  colperpexlem3  26532  mideulem2  26534  midex  26537  opphllem1  26547  opphllem2  26548  opphllem3  26549  opphllem5  26551  opphllem6  26552  trgcopyeulem  26605
  Copyright terms: Public domain W3C validator