![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mircom | Structured version Visualization version GIF version |
Description: Variation on mirmir 25973. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mircom.1 | ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) |
Ref | Expression |
---|---|
mircom | ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mircom.1 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) = 𝐶) | |
2 | 1 | fveq2d 6436 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = (𝑀‘𝐶)) |
3 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
5 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
7 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
9 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
10 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
11 | mirmir.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
12 | 3, 4, 5, 6, 7, 8, 9, 10, 11 | mirmir 25973 | . 2 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
13 | 2, 12 | eqtr3d 2862 | 1 ⊢ (𝜑 → (𝑀‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ‘cfv 6122 Basecbs 16221 distcds 16313 TarskiGcstrkg 25741 Itvcitv 25747 LineGclng 25748 pInvGcmir 25963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-trkgc 25759 df-trkgb 25760 df-trkgcb 25761 df-trkg 25764 df-mir 25964 |
This theorem is referenced by: miduniq 25996 colperpexlem3 26040 mideulem2 26042 midex 26045 opphllem1 26055 opphllem2 26056 opphllem3 26057 opphllem5 26059 opphllem6 26060 trgcopyeulem 26113 |
Copyright terms: Public domain | W3C validator |