MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirmir Structured version   Visualization version   GIF version

Theorem mirmir 28646
Description: The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirmir (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)

Proof of Theorem mirmir
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mirmir.b . . . 4 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 28645 . . 3 (𝜑 → (𝑀𝐵) ∈ 𝑃)
111, 2, 3, 4, 5, 6, 7, 8, 9mircgr 28641 . . . 4 (𝜑 → (𝐴 (𝑀𝐵)) = (𝐴 𝐵))
1211eqcomd 2742 . . 3 (𝜑 → (𝐴 𝐵) = (𝐴 (𝑀𝐵)))
131, 2, 3, 4, 5, 6, 7, 8, 9mirbtwn 28642 . . . 4 (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
141, 2, 3, 6, 10, 7, 9, 13tgbtwncom 28472 . . 3 (𝜑𝐴 ∈ (𝐵𝐼(𝑀𝐵)))
151, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 14ismir 28643 . 2 (𝜑𝐵 = (𝑀‘(𝑀𝐵)))
1615eqcomd 2742 1 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  pInvGcmir 28636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-mir 28637
This theorem is referenced by:  mircom  28647  mirreu  28648  mireq  28649  mirne  28651  mirf1o  28653  mirbtwnb  28656  miduniq2  28671  ragcom  28682  ragmir  28684  colperpexlem1  28714  colperpexlem2  28715  opphllem2  28732  opphllem3  28733  opphllem4  28734  opphllem6  28736  opphl  28738  colhp  28754  sacgr  28815
  Copyright terms: Public domain W3C validator