![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirmir | Structured version Visualization version GIF version |
Description: The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirmir | ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirmir.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 28687 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircgr 28683 | . . . 4 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
12 | 11 | eqcomd 2746 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − (𝑀‘𝐵))) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirbtwn 28684 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
14 | 1, 2, 3, 6, 10, 7, 9, 13 | tgbtwncom 28514 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼(𝑀‘𝐵))) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 14 | ismir 28685 | . 2 ⊢ (𝜑 → 𝐵 = (𝑀‘(𝑀‘𝐵))) |
16 | 15 | eqcomd 2746 | 1 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 pInvGcmir 28678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 df-mir 28679 |
This theorem is referenced by: mircom 28689 mirreu 28690 mireq 28691 mirne 28693 mirf1o 28695 mirbtwnb 28698 miduniq2 28713 ragcom 28724 ragmir 28726 colperpexlem1 28756 colperpexlem2 28757 opphllem2 28774 opphllem3 28775 opphllem4 28776 opphllem6 28778 opphl 28780 colhp 28796 sacgr 28857 |
Copyright terms: Public domain | W3C validator |