![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirmir | Structured version Visualization version GIF version |
Description: The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
mirval.a | β’ (π β π΄ β π) |
mirfv.m | β’ π = (πβπ΄) |
mirmir.b | β’ (π β π΅ β π) |
Ref | Expression |
---|---|
mirmir | β’ (π β (πβ(πβπ΅)) = π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 β’ π = (BaseβπΊ) | |
2 | mirval.d | . . 3 β’ β = (distβπΊ) | |
3 | mirval.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | mirval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | mirval.s | . . 3 β’ π = (pInvGβπΊ) | |
6 | mirval.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | mirval.a | . . 3 β’ (π β π΄ β π) | |
8 | mirfv.m | . . 3 β’ π = (πβπ΄) | |
9 | mirmir.b | . . . 4 β’ (π β π΅ β π) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 27943 | . . 3 β’ (π β (πβπ΅) β π) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircgr 27939 | . . . 4 β’ (π β (π΄ β (πβπ΅)) = (π΄ β π΅)) |
12 | 11 | eqcomd 2739 | . . 3 β’ (π β (π΄ β π΅) = (π΄ β (πβπ΅))) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirbtwn 27940 | . . . 4 β’ (π β π΄ β ((πβπ΅)πΌπ΅)) |
14 | 1, 2, 3, 6, 10, 7, 9, 13 | tgbtwncom 27770 | . . 3 β’ (π β π΄ β (π΅πΌ(πβπ΅))) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 14 | ismir 27941 | . 2 β’ (π β π΅ = (πβ(πβπ΅))) |
16 | 15 | eqcomd 2739 | 1 β’ (π β (πβ(πβπ΅)) = π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Basecbs 17144 distcds 17206 TarskiGcstrkg 27709 Itvcitv 27715 LineGclng 27716 pInvGcmir 27934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-trkgc 27730 df-trkgb 27731 df-trkgcb 27732 df-trkg 27735 df-mir 27935 |
This theorem is referenced by: mircom 27945 mirreu 27946 mireq 27947 mirne 27949 mirf1o 27951 mirbtwnb 27954 miduniq2 27969 ragcom 27980 ragmir 27982 colperpexlem1 28012 colperpexlem2 28013 opphllem2 28030 opphllem3 28031 opphllem4 28032 opphllem6 28034 opphl 28036 colhp 28052 sacgr 28113 |
Copyright terms: Public domain | W3C validator |