Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirmir | Structured version Visualization version GIF version |
Description: The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirmir | ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | mirmir.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 26926 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircgr 26922 | . . . 4 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
12 | 11 | eqcomd 2744 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − (𝑀‘𝐵))) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirbtwn 26923 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
14 | 1, 2, 3, 6, 10, 7, 9, 13 | tgbtwncom 26753 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼(𝑀‘𝐵))) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 14 | ismir 26924 | . 2 ⊢ (𝜑 → 𝐵 = (𝑀‘(𝑀‘𝐵))) |
16 | 15 | eqcomd 2744 | 1 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 pInvGcmir 26917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-mir 26918 |
This theorem is referenced by: mircom 26928 mirreu 26929 mireq 26930 mirne 26932 mirf1o 26934 mirbtwnb 26937 miduniq2 26952 ragcom 26963 ragmir 26965 colperpexlem1 26995 colperpexlem2 26996 opphllem2 27013 opphllem3 27014 opphllem4 27015 opphllem6 27017 opphl 27019 colhp 27035 sacgr 27096 |
Copyright terms: Public domain | W3C validator |