| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirmir | Structured version Visualization version GIF version | ||
| Description: The point inversion function is an involution. Theorem 7.7 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirmir.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirmir | ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 8 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 9 | mirmir.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircl 28595 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mircgr 28591 | . . . 4 ⊢ (𝜑 → (𝐴 − (𝑀‘𝐵)) = (𝐴 − 𝐵)) |
| 12 | 11 | eqcomd 2736 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) = (𝐴 − (𝑀‘𝐵))) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirbtwn 28592 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ((𝑀‘𝐵)𝐼𝐵)) |
| 14 | 1, 2, 3, 6, 10, 7, 9, 13 | tgbtwncom 28422 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐼(𝑀‘𝐵))) |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 12, 14 | ismir 28593 | . 2 ⊢ (𝜑 → 𝐵 = (𝑀‘(𝑀‘𝐵))) |
| 16 | 15 | eqcomd 2736 | 1 ⊢ (𝜑 → (𝑀‘(𝑀‘𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 pInvGcmir 28586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 df-mir 28587 |
| This theorem is referenced by: mircom 28597 mirreu 28598 mireq 28599 mirne 28601 mirf1o 28603 mirbtwnb 28606 miduniq2 28621 ragcom 28632 ragmir 28634 colperpexlem1 28664 colperpexlem2 28665 opphllem2 28682 opphllem3 28683 opphllem4 28684 opphllem6 28686 opphl 28688 colhp 28704 sacgr 28765 |
| Copyright terms: Public domain | W3C validator |