MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvcl Structured version   Visualization version   GIF version

Theorem mndvcl 18823
Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
Assertion
Ref Expression
mndvcl ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))

Proof of Theorem mndvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndvcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mndvcl.p . . . . . 6 + = (+g𝑀)
31, 2mndcl 18768 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
433expb 1119 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
543ad2antl1 1184 . . 3 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
6 elmapi 8888 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
763ad2ant2 1133 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
8 elmapi 8888 . . . 4 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
983ad2ant3 1134 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
10 elmapex 8887 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
1110simprd 495 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
12113ad2ant2 1133 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
13 inidm 4235 . . 3 (𝐼𝐼) = 𝐼
145, 7, 9, 12, 12, 13off 7715 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌):𝐼𝐵)
151fvexi 6921 . . 3 𝐵 ∈ V
16 elmapg 8878 . . 3 ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1715, 12, 16sylancr 587 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1814, 17mpbird 257 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Basecbs 17245  +gcplusg 17298  Mndcmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-1st 8013  df-2nd 8014  df-map 8867  df-mgm 18666  df-sgrp 18745  df-mnd 18761
This theorem is referenced by:  ringvcl  22420  mamudi  22423  mamudir  22424
  Copyright terms: Public domain W3C validator