MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvcl Structured version   Visualization version   GIF version

Theorem mndvcl 20994
Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
Assertion
Ref Expression
mndvcl ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))

Proof of Theorem mndvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndvcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mndvcl.p . . . . . 6 + = (+g𝑀)
31, 2mndcl 17911 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
433expb 1115 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
543ad2antl1 1180 . . 3 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
6 elmapi 8420 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
763ad2ant2 1129 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
8 elmapi 8420 . . . 4 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
983ad2ant3 1130 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
10 elmapex 8419 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
1110simprd 498 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
12113ad2ant2 1129 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
13 inidm 4193 . . 3 (𝐼𝐼) = 𝐼
145, 7, 9, 12, 12, 13off 7416 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌):𝐼𝐵)
151fvexi 6677 . . 3 𝐵 ∈ V
16 elmapg 8411 . . 3 ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1715, 12, 16sylancr 589 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1814, 17mpbird 259 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  Vcvv 3493  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399  m cmap 8398  Basecbs 16475  +gcplusg 16557  Mndcmnd 17903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-1st 7681  df-2nd 7682  df-map 8400  df-mgm 17844  df-sgrp 17893  df-mnd 17904
This theorem is referenced by:  ringvcl  21001  mamudi  21004  mamudir  21005
  Copyright terms: Public domain W3C validator