| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndvcl | Structured version Visualization version GIF version | ||
| Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mndvcl.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mndvcl | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndvcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | mndvcl.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
| 3 | 1, 2 | mndcl 18634 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 4 | 3 | 3expb 1120 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 5 | 4 | 3ad2antl1 1186 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 6 | elmapi 8783 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 8 | elmapi 8783 | . . . 4 ⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → 𝑌:𝐼⟶𝐵) | |
| 9 | 8 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑌:𝐼⟶𝐵) |
| 10 | elmapex 8782 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 11 | 10 | simprd 495 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 12 | 11 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 13 | inidm 4180 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 14 | 5, 7, 9, 12, 12, 13 | off 7635 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌):𝐼⟶𝐵) |
| 15 | 1 | fvexi 6840 | . . 3 ⊢ 𝐵 ∈ V |
| 16 | elmapg 8773 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼) ↔ (𝑋 ∘f + 𝑌):𝐼⟶𝐵)) | |
| 17 | 15, 12, 16 | sylancr 587 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → ((𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼) ↔ (𝑋 ∘f + 𝑌):𝐼⟶𝐵)) |
| 18 | 14, 17 | mpbird 257 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ∘f cof 7615 ↑m cmap 8760 Basecbs 17138 +gcplusg 17179 Mndcmnd 18626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-1st 7931 df-2nd 7932 df-map 8762 df-mgm 18532 df-sgrp 18611 df-mnd 18627 |
| This theorem is referenced by: ringvcl 22303 mamudi 22306 mamudir 22307 |
| Copyright terms: Public domain | W3C validator |