Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndvcl | Structured version Visualization version GIF version |
Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mndvcl.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
mndvcl | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndvcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
2 | mndvcl.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
3 | 1, 2 | mndcl 17985 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
4 | 3 | 3expb 1117 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
5 | 4 | 3ad2antl1 1182 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
6 | elmapi 8438 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
7 | 6 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
8 | elmapi 8438 | . . . 4 ⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → 𝑌:𝐼⟶𝐵) | |
9 | 8 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑌:𝐼⟶𝐵) |
10 | elmapex 8437 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
11 | 10 | simprd 499 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
12 | 11 | 3ad2ant2 1131 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
13 | inidm 4123 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
14 | 5, 7, 9, 12, 12, 13 | off 7422 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌):𝐼⟶𝐵) |
15 | 1 | fvexi 6672 | . . 3 ⊢ 𝐵 ∈ V |
16 | elmapg 8429 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼) ↔ (𝑋 ∘f + 𝑌):𝐼⟶𝐵)) | |
17 | 15, 12, 16 | sylancr 590 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → ((𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼) ↔ (𝑋 ∘f + 𝑌):𝐼⟶𝐵)) |
18 | 14, 17 | mpbird 260 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ∘f cof 7403 ↑m cmap 8416 Basecbs 16541 +gcplusg 16623 Mndcmnd 17977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-1st 7693 df-2nd 7694 df-map 8418 df-mgm 17918 df-sgrp 17967 df-mnd 17978 |
This theorem is referenced by: ringvcl 21100 mamudi 21103 mamudir 21104 |
Copyright terms: Public domain | W3C validator |