MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvcl Structured version   Visualization version   GIF version

Theorem mndvcl 18832
Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
Assertion
Ref Expression
mndvcl ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))

Proof of Theorem mndvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndvcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mndvcl.p . . . . . 6 + = (+g𝑀)
31, 2mndcl 18780 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
433expb 1120 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
543ad2antl1 1185 . . 3 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
6 elmapi 8907 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
763ad2ant2 1134 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
8 elmapi 8907 . . . 4 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
983ad2ant3 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
10 elmapex 8906 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
1110simprd 495 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
12113ad2ant2 1134 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
13 inidm 4248 . . 3 (𝐼𝐼) = 𝐼
145, 7, 9, 12, 12, 13off 7732 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌):𝐼𝐵)
151fvexi 6934 . . 3 𝐵 ∈ V
16 elmapg 8897 . . 3 ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1715, 12, 16sylancr 586 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1814, 17mpbird 257 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Basecbs 17258  +gcplusg 17311  Mndcmnd 18772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-1st 8030  df-2nd 8031  df-map 8886  df-mgm 18678  df-sgrp 18757  df-mnd 18773
This theorem is referenced by:  ringvcl  22425  mamudi  22428  mamudir  22429
  Copyright terms: Public domain W3C validator