| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndvcl | Structured version Visualization version GIF version | ||
| Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mndvcl.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mndvcl | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndvcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | mndvcl.p | . . . . . 6 ⊢ + = (+g‘𝑀) | |
| 3 | 1, 2 | mndcl 18725 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 4 | 3 | 3expb 1120 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 5 | 4 | 3ad2antl1 1186 | . . 3 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
| 6 | elmapi 8868 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 8 | elmapi 8868 | . . . 4 ⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → 𝑌:𝐼⟶𝐵) | |
| 9 | 8 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝑌:𝐼⟶𝐵) |
| 10 | elmapex 8867 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 11 | 10 | simprd 495 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 12 | 11 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 13 | inidm 4207 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 14 | 5, 7, 9, 12, 12, 13 | off 7694 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌):𝐼⟶𝐵) |
| 15 | 1 | fvexi 6895 | . . 3 ⊢ 𝐵 ∈ V |
| 16 | elmapg 8858 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼) ↔ (𝑋 ∘f + 𝑌):𝐼⟶𝐵)) | |
| 17 | 15, 12, 16 | sylancr 587 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → ((𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼) ↔ (𝑋 ∘f + 𝑌):𝐼⟶𝐵)) |
| 18 | 14, 17 | mpbird 257 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + 𝑌) ∈ (𝐵 ↑m 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 ↑m cmap 8845 Basecbs 17233 +gcplusg 17276 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-1st 7993 df-2nd 7994 df-map 8847 df-mgm 18623 df-sgrp 18702 df-mnd 18718 |
| This theorem is referenced by: ringvcl 22343 mamudi 22346 mamudir 22347 |
| Copyright terms: Public domain | W3C validator |