MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvcl Structured version   Visualization version   GIF version

Theorem mndvcl 18810
Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
Assertion
Ref Expression
mndvcl ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))

Proof of Theorem mndvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndvcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mndvcl.p . . . . . 6 + = (+g𝑀)
31, 2mndcl 18755 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
433expb 1121 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
543ad2antl1 1186 . . 3 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
6 elmapi 8889 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
763ad2ant2 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
8 elmapi 8889 . . . 4 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
983ad2ant3 1136 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
10 elmapex 8888 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
1110simprd 495 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
12113ad2ant2 1135 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
13 inidm 4227 . . 3 (𝐼𝐼) = 𝐼
145, 7, 9, 12, 12, 13off 7715 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌):𝐼𝐵)
151fvexi 6920 . . 3 𝐵 ∈ V
16 elmapg 8879 . . 3 ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1715, 12, 16sylancr 587 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → ((𝑋f + 𝑌) ∈ (𝐵m 𝐼) ↔ (𝑋f + 𝑌):𝐼𝐵))
1814, 17mpbird 257 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) ∈ (𝐵m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  m cmap 8866  Basecbs 17247  +gcplusg 17297  Mndcmnd 18747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-1st 8014  df-2nd 8015  df-map 8868  df-mgm 18653  df-sgrp 18732  df-mnd 18748
This theorem is referenced by:  ringvcl  22404  mamudi  22407  mamudir  22408
  Copyright terms: Public domain W3C validator