| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mply1topmatval | Structured version Visualization version GIF version | ||
| Description: A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼‘𝑂)) = 𝑂) (see mp2pm2mp 22731). (Contributed by AV, 6-Oct-2019.) |
| Ref | Expression |
|---|---|
| mply1topmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mply1topmat.q | ⊢ 𝑄 = (Poly1‘𝐴) |
| mply1topmat.l | ⊢ 𝐿 = (Base‘𝑄) |
| mply1topmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mply1topmat.m | ⊢ · = ( ·𝑠 ‘𝑃) |
| mply1topmat.e | ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) |
| mply1topmat.y | ⊢ 𝑌 = (var1‘𝑅) |
| mply1topmat.i | ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| Ref | Expression |
|---|---|
| mply1topmatval | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mply1topmat.i | . 2 ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | |
| 2 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑝 = 𝑂 → (coe1‘𝑝) = (coe1‘𝑂)) | |
| 3 | 2 | fveq1d 6842 | . . . . . . 7 ⊢ (𝑝 = 𝑂 → ((coe1‘𝑝)‘𝑘) = ((coe1‘𝑂)‘𝑘)) |
| 4 | 3 | oveqd 7386 | . . . . . 6 ⊢ (𝑝 = 𝑂 → (𝑖((coe1‘𝑝)‘𝑘)𝑗) = (𝑖((coe1‘𝑂)‘𝑘)𝑗)) |
| 5 | 4 | oveq1d 7384 | . . . . 5 ⊢ (𝑝 = 𝑂 → ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) |
| 6 | 5 | mpteq2dv 5196 | . . . 4 ⊢ (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) |
| 7 | 6 | oveq2d 7385 | . . 3 ⊢ (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) |
| 8 | 7 | mpoeq3dv 7448 | . 2 ⊢ (𝑝 = 𝑂 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| 9 | simpr 484 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → 𝑂 ∈ 𝐿) | |
| 10 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → 𝑁 ∈ 𝑉) | |
| 11 | mpoexga 8035 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) | |
| 12 | 10, 11 | syldan 591 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) |
| 13 | 1, 8, 9, 12 | fvmptd3 6973 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ℕ0cn0 12418 Basecbs 17155 ·𝑠 cvsca 17200 Σg cgsu 17379 .gcmg 18981 mulGrpcmgp 20060 var1cv1 22093 Poly1cpl1 22094 coe1cco1 22095 Mat cmat 22327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: mply1topmatcl 22725 |
| Copyright terms: Public domain | W3C validator |