![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mply1topmatval | Structured version Visualization version GIF version |
Description: A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼‘𝑂)) = 𝑂) (see mp2pm2mp 22838). (Contributed by AV, 6-Oct-2019.) |
Ref | Expression |
---|---|
mply1topmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mply1topmat.q | ⊢ 𝑄 = (Poly1‘𝐴) |
mply1topmat.l | ⊢ 𝐿 = (Base‘𝑄) |
mply1topmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mply1topmat.m | ⊢ · = ( ·𝑠 ‘𝑃) |
mply1topmat.e | ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) |
mply1topmat.y | ⊢ 𝑌 = (var1‘𝑅) |
mply1topmat.i | ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Ref | Expression |
---|---|
mply1topmatval | ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mply1topmat.i | . 2 ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) | |
2 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑝 = 𝑂 → (coe1‘𝑝) = (coe1‘𝑂)) | |
3 | 2 | fveq1d 6922 | . . . . . . 7 ⊢ (𝑝 = 𝑂 → ((coe1‘𝑝)‘𝑘) = ((coe1‘𝑂)‘𝑘)) |
4 | 3 | oveqd 7465 | . . . . . 6 ⊢ (𝑝 = 𝑂 → (𝑖((coe1‘𝑝)‘𝑘)𝑗) = (𝑖((coe1‘𝑂)‘𝑘)𝑗)) |
5 | 4 | oveq1d 7463 | . . . . 5 ⊢ (𝑝 = 𝑂 → ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) |
6 | 5 | mpteq2dv 5268 | . . . 4 ⊢ (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) |
7 | 6 | oveq2d 7464 | . . 3 ⊢ (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) |
8 | 7 | mpoeq3dv 7529 | . 2 ⊢ (𝑝 = 𝑂 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
9 | simpr 484 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → 𝑂 ∈ 𝐿) | |
10 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → 𝑁 ∈ 𝑉) | |
11 | mpoexga 8118 | . . 3 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) | |
12 | 10, 11 | syldan 590 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V) |
13 | 1, 8, 9, 12 | fvmptd3 7052 | 1 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑂 ∈ 𝐿) → (𝐼‘𝑂) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℕ0cn0 12553 Basecbs 17258 ·𝑠 cvsca 17315 Σg cgsu 17500 .gcmg 19107 mulGrpcmgp 20161 var1cv1 22198 Poly1cpl1 22199 coe1cco1 22200 Mat cmat 22432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: mply1topmatcl 22832 |
Copyright terms: Public domain | W3C validator |