MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mply1topmatval Structured version   Visualization version   GIF version

Theorem mply1topmatval 22724
Description: A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼𝑂)) = 𝑂) (see mp2pm2mp 22731). (Contributed by AV, 6-Oct-2019.)
Hypotheses
Ref Expression
mply1topmat.a 𝐴 = (𝑁 Mat 𝑅)
mply1topmat.q 𝑄 = (Poly1𝐴)
mply1topmat.l 𝐿 = (Base‘𝑄)
mply1topmat.p 𝑃 = (Poly1𝑅)
mply1topmat.m · = ( ·𝑠𝑃)
mply1topmat.e 𝐸 = (.g‘(mulGrp‘𝑃))
mply1topmat.y 𝑌 = (var1𝑅)
mply1topmat.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Assertion
Ref Expression
mply1topmatval ((𝑁𝑉𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑝   𝐸,𝑝   𝐿,𝑝   𝑃,𝑝   𝑉,𝑝   𝑌,𝑝   𝑖,𝑂,𝑗,𝑘,𝑝   · ,𝑘,𝑝
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑝)   𝑃(𝑖,𝑗,𝑘)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝑅(𝑖,𝑗,𝑘,𝑝)   · (𝑖,𝑗)   𝐸(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐿(𝑖,𝑗,𝑘)   𝑁(𝑘)   𝑉(𝑖,𝑗,𝑘)   𝑌(𝑖,𝑗,𝑘)

Proof of Theorem mply1topmatval
StepHypRef Expression
1 mply1topmat.i . 2 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
2 fveq2 6840 . . . . . . . 8 (𝑝 = 𝑂 → (coe1𝑝) = (coe1𝑂))
32fveq1d 6842 . . . . . . 7 (𝑝 = 𝑂 → ((coe1𝑝)‘𝑘) = ((coe1𝑂)‘𝑘))
43oveqd 7386 . . . . . 6 (𝑝 = 𝑂 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑘)𝑗))
54oveq1d 7384 . . . . 5 (𝑝 = 𝑂 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))
65mpteq2dv 5196 . . . 4 (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))
76oveq2d 7385 . . 3 (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
87mpoeq3dv 7448 . 2 (𝑝 = 𝑂 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
9 simpr 484 . 2 ((𝑁𝑉𝑂𝐿) → 𝑂𝐿)
10 simpl 482 . . 3 ((𝑁𝑉𝑂𝐿) → 𝑁𝑉)
11 mpoexga 8035 . . 3 ((𝑁𝑉𝑁𝑉) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
1210, 11syldan 591 . 2 ((𝑁𝑉𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
131, 8, 9, 12fvmptd3 6973 1 ((𝑁𝑉𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  cfv 6499  (class class class)co 7369  cmpo 7371  0cn0 12418  Basecbs 17155   ·𝑠 cvsca 17200   Σg cgsu 17379  .gcmg 18981  mulGrpcmgp 20060  var1cv1 22093  Poly1cpl1 22094  coe1cco1 22095   Mat cmat 22327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948
This theorem is referenced by:  mply1topmatcl  22725
  Copyright terms: Public domain W3C validator