MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mply1topmatval Structured version   Visualization version   GIF version

Theorem mply1topmatval 21861
Description: A polynomial over matrices transformed into a polynomial matrix. 𝐼 is the inverse function of the transformation 𝑇 of polynomial matrices into polynomials over matrices: (𝑇‘(𝐼𝑂)) = 𝑂) (see mp2pm2mp 21868). (Contributed by AV, 6-Oct-2019.)
Hypotheses
Ref Expression
mply1topmat.a 𝐴 = (𝑁 Mat 𝑅)
mply1topmat.q 𝑄 = (Poly1𝐴)
mply1topmat.l 𝐿 = (Base‘𝑄)
mply1topmat.p 𝑃 = (Poly1𝑅)
mply1topmat.m · = ( ·𝑠𝑃)
mply1topmat.e 𝐸 = (.g‘(mulGrp‘𝑃))
mply1topmat.y 𝑌 = (var1𝑅)
mply1topmat.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Assertion
Ref Expression
mply1topmatval ((𝑁𝑉𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑝   𝐸,𝑝   𝐿,𝑝   𝑃,𝑝   𝑉,𝑝   𝑌,𝑝   𝑖,𝑂,𝑗,𝑘,𝑝   · ,𝑘,𝑝
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑝)   𝑃(𝑖,𝑗,𝑘)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝑅(𝑖,𝑗,𝑘,𝑝)   · (𝑖,𝑗)   𝐸(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝐿(𝑖,𝑗,𝑘)   𝑁(𝑘)   𝑉(𝑖,𝑗,𝑘)   𝑌(𝑖,𝑗,𝑘)

Proof of Theorem mply1topmatval
StepHypRef Expression
1 mply1topmat.i . 2 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
2 fveq2 6756 . . . . . . . 8 (𝑝 = 𝑂 → (coe1𝑝) = (coe1𝑂))
32fveq1d 6758 . . . . . . 7 (𝑝 = 𝑂 → ((coe1𝑝)‘𝑘) = ((coe1𝑂)‘𝑘))
43oveqd 7272 . . . . . 6 (𝑝 = 𝑂 → (𝑖((coe1𝑝)‘𝑘)𝑗) = (𝑖((coe1𝑂)‘𝑘)𝑗))
54oveq1d 7270 . . . . 5 (𝑝 = 𝑂 → ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)) = ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))
65mpteq2dv 5172 . . . 4 (𝑝 = 𝑂 → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))) = (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))
76oveq2d 7271 . . 3 (𝑝 = 𝑂 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))
87mpoeq3dv 7332 . 2 (𝑝 = 𝑂 → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
9 simpr 484 . 2 ((𝑁𝑉𝑂𝐿) → 𝑂𝐿)
10 simpl 482 . . 3 ((𝑁𝑉𝑂𝐿) → 𝑁𝑉)
11 mpoexga 7891 . . 3 ((𝑁𝑉𝑁𝑉) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
1210, 11syldan 590 . 2 ((𝑁𝑉𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ V)
131, 8, 9, 12fvmptd3 6880 1 ((𝑁𝑉𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cmpt 5153  cfv 6418  (class class class)co 7255  cmpo 7257  0cn0 12163  Basecbs 16840   ·𝑠 cvsca 16892   Σg cgsu 17068  .gcmg 18615  mulGrpcmgp 19635  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259   Mat cmat 21464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805
This theorem is referenced by:  mply1topmatcl  21862
  Copyright terms: Public domain W3C validator