![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mply1topmatcllem | Structured version Visualization version GIF version |
Description: Lemma for mply1topmatcl 22737. (Contributed by AV, 6-Oct-2019.) |
Ref | Expression |
---|---|
mply1topmat.a | β’ π΄ = (π Mat π ) |
mply1topmat.q | β’ π = (Poly1βπ΄) |
mply1topmat.l | β’ πΏ = (Baseβπ) |
mply1topmat.p | β’ π = (Poly1βπ ) |
mply1topmat.m | β’ Β· = ( Β·π βπ) |
mply1topmat.e | β’ πΈ = (.gβ(mulGrpβπ)) |
mply1topmat.y | β’ π = (var1βπ ) |
Ref | Expression |
---|---|
mply1topmatcllem | β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β (π β β0 β¦ ((πΌ((coe1βπ)βπ)π½) Β· (ππΈπ))) finSupp (0gβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 12508 | . . 3 β’ β0 β V | |
2 | 1 | a1i 11 | . 2 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β β0 β V) |
3 | mply1topmat.p | . . . . 5 β’ π = (Poly1βπ ) | |
4 | 3 | ply1lmod 22179 | . . . 4 β’ (π β Ring β π β LMod) |
5 | 4 | 3ad2ant2 1131 | . . 3 β’ ((π β Fin β§ π β Ring β§ π β πΏ) β π β LMod) |
6 | 5 | 3ad2ant1 1130 | . 2 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β π β LMod) |
7 | simp12 1201 | . . 3 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β π β Ring) | |
8 | 3 | ply1sca 22180 | . . 3 β’ (π β Ring β π = (Scalarβπ)) |
9 | 7, 8 | syl 17 | . 2 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β π = (Scalarβπ)) |
10 | eqid 2725 | . 2 β’ (Baseβπ) = (Baseβπ) | |
11 | ovexd 7452 | . 2 β’ ((((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β§ π β β0) β (πΌ((coe1βπ)βπ)π½) β V) | |
12 | eqid 2725 | . . . 4 β’ (mulGrpβπ) = (mulGrpβπ) | |
13 | 12, 10 | mgpbas 20084 | . . 3 β’ (Baseβπ) = (Baseβ(mulGrpβπ)) |
14 | mply1topmat.e | . . 3 β’ πΈ = (.gβ(mulGrpβπ)) | |
15 | 3 | ply1ring 22175 | . . . . . . 7 β’ (π β Ring β π β Ring) |
16 | 12 | ringmgp 20183 | . . . . . . 7 β’ (π β Ring β (mulGrpβπ) β Mnd) |
17 | 15, 16 | syl 17 | . . . . . 6 β’ (π β Ring β (mulGrpβπ) β Mnd) |
18 | 17 | 3ad2ant2 1131 | . . . . 5 β’ ((π β Fin β§ π β Ring β§ π β πΏ) β (mulGrpβπ) β Mnd) |
19 | 18 | 3ad2ant1 1130 | . . . 4 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β (mulGrpβπ) β Mnd) |
20 | 19 | adantr 479 | . . 3 β’ ((((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β§ π β β0) β (mulGrpβπ) β Mnd) |
21 | simpr 483 | . . 3 β’ ((((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β§ π β β0) β π β β0) | |
22 | mply1topmat.y | . . . . . . 7 β’ π = (var1βπ ) | |
23 | 22, 3, 10 | vr1cl 22145 | . . . . . 6 β’ (π β Ring β π β (Baseβπ)) |
24 | 23 | 3ad2ant2 1131 | . . . . 5 β’ ((π β Fin β§ π β Ring β§ π β πΏ) β π β (Baseβπ)) |
25 | 24 | 3ad2ant1 1130 | . . . 4 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β π β (Baseβπ)) |
26 | 25 | adantr 479 | . . 3 β’ ((((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β§ π β β0) β π β (Baseβπ)) |
27 | 13, 14, 20, 21, 26 | mulgnn0cld 19054 | . 2 β’ ((((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β§ π β β0) β (ππΈπ) β (Baseβπ)) |
28 | eqid 2725 | . 2 β’ (0gβπ) = (0gβπ) | |
29 | eqid 2725 | . 2 β’ (0gβπ ) = (0gβπ ) | |
30 | mply1topmat.m | . 2 β’ Β· = ( Β·π βπ) | |
31 | mply1topmat.a | . . 3 β’ π΄ = (π Mat π ) | |
32 | mply1topmat.q | . . 3 β’ π = (Poly1βπ΄) | |
33 | mply1topmat.l | . . 3 β’ πΏ = (Baseβπ) | |
34 | 31, 32, 33 | mptcoe1matfsupp 22734 | . 2 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β (π β β0 β¦ (πΌ((coe1βπ)βπ)π½)) finSupp (0gβπ )) |
35 | 2, 6, 9, 10, 11, 27, 28, 29, 30, 34 | mptscmfsupp0 20814 | 1 β’ (((π β Fin β§ π β Ring β§ π β πΏ) β§ πΌ β π β§ π½ β π) β (π β β0 β¦ ((πΌ((coe1βπ)βπ)π½) Β· (ππΈπ))) finSupp (0gβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 Vcvv 3463 class class class wbr 5148 β¦ cmpt 5231 βcfv 6547 (class class class)co 7417 Fincfn 8962 finSupp cfsupp 9385 β0cn0 12502 Basecbs 17179 Scalarcsca 17235 Β·π cvsca 17236 0gc0g 17420 Mndcmnd 18693 .gcmg 19027 mulGrpcmgp 20078 Ringcrg 20177 LModclmod 20747 var1cv1 22103 Poly1cpl1 22104 coe1cco1 22105 Mat cmat 22337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-isom 6556 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-of 7683 df-ofr 7684 df-om 7870 df-1st 7992 df-2nd 7993 df-supp 8164 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-pm 8846 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fsupp 9386 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-fzo 13660 df-seq 13999 df-hash 14322 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-hom 17256 df-cco 17257 df-0g 17422 df-gsum 17423 df-prds 17428 df-pws 17430 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-submnd 18740 df-grp 18897 df-minusg 18898 df-sbg 18899 df-mulg 19028 df-subg 19082 df-ghm 19172 df-cntz 19272 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-subrng 20487 df-subrg 20512 df-lmod 20749 df-lss 20820 df-sra 21062 df-rgmod 21063 df-dsmm 21670 df-frlm 21685 df-psr 21846 df-mvr 21847 df-mpl 21848 df-opsr 21850 df-psr1 22107 df-vr1 22108 df-ply1 22109 df-coe1 22110 df-mat 22338 |
This theorem is referenced by: mply1topmatcl 22737 mp2pm2mplem2 22739 |
Copyright terms: Public domain | W3C validator |